por IlgssonBraga » Sáb Fev 08, 2014 17:32
Bem pessoal, eu queria saber se para provar que o limite de uma função é um determinado L pela definição formal eu posso provar separadamente cada parte dessa função usando as propriedades operatórias de um limite (devidamente comprovadas).
Exemplo: Prove que

.
Aí eu poderia fazer (nesse caso aqui assumindo como verdadeira a operação de multiplicação de limites)

Como,

Intuitivamente temos:

Agora provar isso:
Para todo

existe um

tal que

Fazendo nesse caso

temos que é verdadeiro que

Agora substituindo lá em cima:

3.3=9
9=9 (C.Q.D)
Fica demonstrado, só não sei se é um jeito correto. Alguém pode me dizer se pode ser feito assim ?
-
IlgssonBraga
- Usuário Ativo

-
- Mensagens: 18
- Registrado em: Qui Jul 18, 2013 10:07
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática
- Andamento: cursando
por e8group » Sáb Fev 08, 2014 19:51
Na minha opinião, o que fez foi provar que o limite da função identidade existe .Mas isto não prova que o limite da função (definida por

) existe .
Comentário :
Considere

e suponha que demonstramos que os limites

e

existem, ou seja , mostramos que

e

.
Agora ,imaginemos que queremos demonstrar

.Isto é, queremos mostrar que dado

existe

tal que se

então

.
A ideia é mostrar que existe

(e este número pode ter alguma relação com os

e

) e em seguida obter

correspondente .
Mas se tomarmos

ou

,não necessariamente garantimos que o limite de

é

quando

tende a

.
Vamos ao caso em que

.
Para

. Tomando-se

, obtemos

tal que

. Mas por outro lado ,

.
Neste link
http://math.berkeley.edu/~drizzolo/Math ... proofs.pdf há uma demostração .
Este exemplo me despertou curiosidade e tentar demonstrar

(n natural)
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por IlgssonBraga » Qua Fev 12, 2014 14:53
Não sei se foi isso que vc quis mostrar, mas eu estava assumindo como verdadeira a propriedade da multiplicação, ou seja, eu iria demonstrá-la para depois usá-la. Feito isso queria saber se o que eu fiz procede. Se eu entendi errado me desculpe!
-
IlgssonBraga
- Usuário Ativo

-
- Mensagens: 18
- Registrado em: Qui Jul 18, 2013 10:07
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática
- Andamento: cursando
por e8group » Qua Fev 12, 2014 21:08
Sim , compreendo que fez hipótese da multiplicação . Estou percebendo que provar a regra operatória "limite do produto é produto dos limites" via definição rigorosa de limite é um pouco complicado. Pesquisando em inglês "How can I prove the product rule of limits? " encontrei o site abaixo
http://planetmath.org/proofoflimitruleofproduct que apresenta uma demonstração . Acho que devemos sim utilizar as proposições , regras operatórias a favor de facilitar a demonstração ,há casos realmente medonho de encontra o epsilon's e os delta's correspondentes.Mas no meu ponto de vista este não é o caso .Quando estamos trabalhando com funções

definida pelo monômio

, podemos provar

, sem a regra operatória já mencionada.Pq não tentar ? O que acha ?
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por IlgssonBraga » Qua Fev 12, 2014 22:48
Blz, então me responde só mais essa. Vi isso em algum lugar.
Prove que

.
Solução:
Para todo

existe um

tal que:

E como


Daí como |x+3|>0 então

Para esse

>0 existe um

portanto o limite existe
Desse jeito pode ser ?
-
IlgssonBraga
- Usuário Ativo

-
- Mensagens: 18
- Registrado em: Qui Jul 18, 2013 10:07
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática
- Andamento: cursando
por e8group » Qui Fev 13, 2014 19:45
Na minha opinião está certo , e assim o delta dependerá de

(dado) e

. Agora só para complementar... como estamos trabalhando com

próximo de

, pondo

e escolhendo

,teremos

.Daí, se

então

.
Agora q vou postar adiante é de leitura opcional .
E quando

p/ algum

natural . Como provar que

para qq . a real ?? Está tentei fazer , e observei q dado

e tomando-se

, então se

logo

.Quando fazermos

e

o delta será igual ao menor valor do conjunto

.
Do caso geral ao particular , veja a solução proposta do primeiro link que postei
http://math.berkeley.edu/~drizzolo/Math ... proofs.pdf ,
conforme o link acima podemos ver que o delta é o menor valor entre 1 e epsilon dividido por 7 , ou seja , a mesma escolha do delta do caso geral com n= 2 e a = 3 .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limites] Limites no "infinito " prova a existência ......
por e8group » Dom Jun 17, 2012 14:37
- 2 Respostas
- 2749 Exibições
- Última mensagem por e8group

Ter Jun 19, 2012 11:20
Cálculo: Limites, Derivadas e Integrais
-
- Limites - erro em prova?
por LFurriel » Dom Jul 25, 2010 22:41
- 5 Respostas
- 3591 Exibições
- Última mensagem por MarceloFantini

Seg Jul 26, 2010 15:28
Cálculo: Limites, Derivadas e Integrais
-
- [teoria de limites] dúvida numa questão de prova
por Fabio Wanderley » Sex Abr 13, 2012 23:38
- 2 Respostas
- 1943 Exibições
- Última mensagem por Fabio Wanderley

Sáb Abr 14, 2012 00:43
Cálculo: Limites, Derivadas e Integrais
-
- [Limites] duas variáveis. Prova através da definição formal
por marcosmuscul » Sáb Jan 25, 2014 17:59
- 2 Respostas
- 6101 Exibições
- Última mensagem por marcosmuscul

Ter Fev 04, 2014 10:03
Cálculo: Limites, Derivadas e Integrais
-
- [limites] reciso de ajuda nessa questão de limites raiz quad
por alexia » Ter Nov 15, 2011 19:55
- 1 Respostas
- 5406 Exibições
- Última mensagem por LuizAquino

Qua Nov 16, 2011 15:16
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.