• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[SÉRIE] Teste da comparação

[SÉRIE] Teste da comparação

Mensagempor luiz1903 » Seg Fev 10, 2014 17:51

Boa tarde a todos, sou novo no fórum e gostaria de tirar umas dúvidas. A questão pede para vc dizer se a série converge ou diverge usando o teste da comparação. Teve tres questões que eu não consegui fazer:
\varepsilon (1+4^n)/(1+3^n)

\varepsilon (raiz(n+2))/(2n^2+n+1)

\varepsilon 1/n!

Sempre o somatório de n=1 até infinito.

Obrigado
luiz1903
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Fev 10, 2014 17:40
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia mecânica
Andamento: cursando

Re: [SÉRIE] Teste da comparação

Mensagempor e8group » Seg Fev 10, 2014 20:41

Boa noite . O que você tentou , quais as dúvidas ?

A primeira pode compara com a série de termos constantes iguais a 1 (pois , 4^n+1 > 3^n + 1 , para todo n) .

Na terceira , para qualquer a > 0 fixado , sempre n! > a^n para n suficientemente grande .
Basta fixar qualquer a  > 1 e comparar a série \sum 1/n! com a geométrica \sum (1/a)^n [/tex] .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [SÉRIE] Teste da comparação

Mensagempor luiz1903 » Ter Fev 11, 2014 09:57

Obrigado por responder.

Na primeira eu peguei a série (6/5)^n, q é uma serie divergente e tem sempre bn<an (an é a série estudada). Sendo assim, an é divergente. Isso está correto?

Não entendi pq vc disse q n!>2^n. Eu preciso de uma série onde bn>an. Supondo a série 1/2^n, os primeiros termos dessa série serão 1/2, 1/4, 1/8... enquanto que os primeiros termos da série 1/n! serão 1/1, 1/2, 1/6 de forma que bn<an
luiz1903
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Fev 10, 2014 17:40
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia mecânica
Andamento: cursando

Re: [SÉRIE] Teste da comparação

Mensagempor e8group » Ter Fev 11, 2014 17:33

Observe que se n! > a^n , isto automaticamente implica 1/n! < 1/a^n (em geral para n suficientemente grande , entretanto , para caso particulares , como a = 2 por exemplo .Neste caso basta impor que n =\geq 4 ) .

Complementando , se a série \sum 1/n! converge também converge .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Sequências

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.