por Questioner » Dom Mai 23, 2010 13:12
Olá,
Preciso determinar se a seguinte série converge:

Comecei utilizando o teste da integral:

Ok. Observando, lembrei que se utiliza-se a ideia de que:
e nela podemos usar uma substituição trigonométrica.

Ou seja, a equação poderia ser descrita como:
} \lim_{b\rightarrow\infty} \int_{0}^{b} \frac{{tg}^{-1} b}{\sqrt[]({}1+{b}^{4})}](/latexrender/pictures/89ae8a6102996430f0724d5bf0ccad0a.png)
Substituindo:
![{x}^{2} = tg(\Theta)\, ,x = \sqrt[]{tg(\Theta)}\, ,d({x}^{2}) = {sec}^{2}(\Theta) {x}^{2} = tg(\Theta)\, ,x = \sqrt[]{tg(\Theta)}\, ,d({x}^{2}) = {sec}^{2}(\Theta)](/latexrender/pictures/d82b05acd82cb77f630e197f5886e93d.png)
Ou seja,
ATENÇÃO AGORA. Fiz de dois jeitos distintos, pois fiquei na dúvida. Vejam se algum confere, por favor:
JEITO AVoltando a primeira integral:

Seguindo:
![\int_{}^{} arctg(\Theta)= arccotg (\Theta) + ln\,\sqrt[]{2} + C \int_{}^{} arctg(\Theta)= arccotg (\Theta) + ln\,\sqrt[]{2} + C](/latexrender/pictures/32a6d0a1b1e2038805a8d6198d85f969.png)
Limite:
![\lim_{b\rightarrow\infty} arccotg (b) + ln\,\sqrt[]{2} \lim_{b\rightarrow\infty} arccotg (b) + ln\,\sqrt[]{2}](/latexrender/pictures/516ab18989298efec4ad2a8345511fa3.png)
O jeito B também não confere com o resultado final.
RESULTADO FINAL: 
Acho que fiz uma tempestade em um copo d'água. A resolução deve ser muito mais simples, mas não consigo vê-la. Alguém pode me ajudar?
Obrigado!
-
Questioner
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Ter Abr 20, 2010 22:13
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por magellanicLMC » Qua Fev 05, 2014 22:06
está certo o teste que tu resolveu usar mas primeiro tu pode facilitar a questão trazendo p uma função de x que vá se comportar de uma forma já conhecida no caso eu faria

e começaria a trabalhar a partir dela
p/ que o teste da integral seja efetuado precisamos primeiro conferir algumas condições
1) a série ser decrescente e continua
2)apresentar termos positivos p/ x maior que 1
supondo que a função de fato admita essas condições vamos aplicar o teste da integral (caso tu tenhas dificuldades aqui pergunte)

considerando


que é exatamente o que temos em nossa integral, substituindo fica

voltando p/u e aplicando os limites fica
analisando o gráfico da tangente e invertendo nos temos o gráfico da arcotangente ou seja

-
magellanicLMC
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Ter Jan 28, 2014 20:35
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por e8group » Qui Fev 06, 2014 12:21
Se não foi determinado um método a seguir , no meu ponto de vista , um método bem simples é o dá comparação .
Observe que a função tangente definida do intervalo

ao

é injetora e sobrejetora (podemos ver esboçando o gráfico) . Assim , a função arco tangente (inversa da tangente) está bem definida de

em

e esta função por sua vez é limitada superiormente por

e inferiormente por

e assim ela é limitada por

o que significa que

para todo

. Quando multiplicamos está desigualdade por

obtemos que

. Desta forma , para

, pondo

temos

.Pelo que

converge ,então

converge .Logo ,

converge .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por magellanicLMC » Qui Fev 06, 2014 23:07
concordo com o que tu desenvolveu santhiago, eu realmente só fiz pelo método mais trabalhoso pqe falava em integral no enunciado mas é preferível o teu jeito hahaha
-
magellanicLMC
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Ter Jan 28, 2014 20:35
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [SÉRIE] teste da integral
por magellanicLMC » Qua Fev 05, 2014 20:38
- 1 Respostas
- 1698 Exibições
- Última mensagem por e8group

Qui Fev 06, 2014 11:55
Cálculo: Limites, Derivadas e Integrais
-
- Duvida de Série pelo teste da integral
por douglasnickson » Sáb Ago 20, 2016 13:41
- 0 Respostas
- 3979 Exibições
- Última mensagem por douglasnickson

Sáb Ago 20, 2016 13:41
Sequências
-
- [Série] Calcular valor de série tendo outra como referência
por robmenas » Dom Abr 07, 2019 14:35
- 0 Respostas
- 8525 Exibições
- Última mensagem por robmenas

Dom Abr 07, 2019 14:35
Sequências
-
- [série de Euler / problema da Basiléia] Série de Fourier
por Burnys » Qua Jul 16, 2008 14:34
- 4 Respostas
- 8854 Exibições
- Última mensagem por admin

Qui Jul 17, 2008 00:33
Sequências
-
- Série
por jccp » Seg Dez 16, 2013 01:44
- 3 Respostas
- 2520 Exibições
- Última mensagem por Russman

Seg Dez 16, 2013 20:19
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.