• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Inequação] Menor Inteiro Positivo

[Inequação] Menor Inteiro Positivo

Mensagempor CJunior » Qui Fev 06, 2014 21:37

(OCM/ITA) Qual é o menor inteiro positivo n tal que \sqrt[2]{n}-\sqrt[2]{n-1}<0,01?
CJunior
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Dom Jan 26, 2014 13:18
Formação Escolar: ENSINO FUNDAMENTAL II
Andamento: cursando

Re: [Inequação] Menor Inteiro Positivo

Mensagempor e8group » Qui Fev 06, 2014 22:16

Dica :

Faça uma substituição k = \sqrt{n} , logo n = k^2 e assim , a desigualdade se escreve como

k - \sqrt{k^2 - 1} < 10^{-2} ou ainda k - 10^{-2} <  \sqrt{k^2 -1} .Pelo que o lado esquerdo da inequação é um número positivo então podemos elevar ambos lados ao quadrado e após simplificações obterá a solução que nos permite analisar o menor natural .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Inequação] Menor Inteiro Positivo

Mensagempor e8group » Qui Fev 06, 2014 22:30

Outra forma é multiplicar a desigualdade por 10^2 \cdot (\sqrt{n} + \sqrt{n-1}) e utilizar que \sqrt{n} > \sqrt{n-1} implicando 2 \sqrt{n} >  \sqrt{n} + \sqrt{n-1}  > 100 .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.