• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Continuidade] Exercício

[Continuidade] Exercício

Mensagempor fff » Sáb Fev 01, 2014 12:39

Utilizando processos contínuos, estuda a continuidade de cada uma das funções, nos pontos indicados. No caso de haver descontinuidade, pronuncia-te acerca da continuidade lateral.
g(x)=\left\{\begin{matrix} \frac{x^2-9 }{x-3} & x\neq3\\ 3 & x=3 \end{matrix}\right. no ponto 3
Eu fiz assim:

\lim_{x \to 3}\frac{x^2-9}{x-3}=\lim_{x\to3 }\frac{(x-3)(x+3)}{x-3}=\lim_{x \to3 }(x+3)=3+3=6
g(3)=3
E para ser contínua é preciso:
- existir \lim_{x \to a }g(x)
-\lim_{x \to a }g(x)=g(a)
Como \lim_{x \to 3 }g(x)\neq g(a), não é contínua.
A resposta é: contínua à esquerda e à direita e não consigo perceber o porquê.
Avatar do usuário
fff
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sáb Dez 21, 2013 11:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Informática
Andamento: cursando

Re: [Continuidade] Exercício

Mensagempor e8group » Sáb Fev 01, 2014 14:20

De fato esta função é descontínua no ponto 3 e ela é removível . Definindo a função f : \mathbb{R} \setminus\{3\} \mapsto \mathbb{R} ; f(x):= \frac{x^2-9}{x-3} .Ora ,como toda função racional é contínua em todos os pontos os quais o seu denominador não se anula .Pelo que f é racional e x-3 \neq 0 ,segue-se que f é contínua . Logo , a função g é descontínua apenas no ponto 3 .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Continuidade] Exercício

Mensagempor fff » Dom Fev 02, 2014 10:23

Muito obrigada :)
Avatar do usuário
fff
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sáb Dez 21, 2013 11:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Informática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: