• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Números Críticos

Números Críticos

Mensagempor Cleyson007 » Ter Jan 28, 2014 18:42

Encontre os números críticos da função g(t)=\left|3t-4 \right|.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Números Críticos

Mensagempor Man Utd » Ter Jan 28, 2014 19:44

Como sabemos da teoria que no ponto crítico a derivada é f'(t)=0 ou a derivada não existe.


Veja o gráfico da função g(t)=3t-4 :


Forum ajudamtematica 1.png




agora veja o gráfico da função : g(t)=|3t-4| :

Forum ajudmatematica 2.png
Forum ajudmatematica 2.png (11.68 KiB) Exibido 2624 vezes




A função modular rebate a parte negativa da função, e veja que justamente depois da raiz de g(t)=3t-4 que é t=\frac{4}{3} a função assume valores negativos, então a função modular rebate esta parte negativa formando uma espécie de "bico" .Nesse "bico" a função não é derivavél, se quiser confimar vc pode derivar pela definição:


Sabemos que a função módulo, é uma função definida por partes:


g(t)=\left\{\begin{matrix}
3t-4, \;\; se \;\; t \geq \frac{4}{3}   \\ 
 -(3t-4), \;\;  se  \;\; t<\frac{4}{3} \\ 
\end{matrix}\right.



\lim_{ t \rightarrow (\frac{4}{3})^{+}} \; \frac{f(t)-f(\frac{4}{3})}{t-\frac{4}{3}}

\lim_{ t  \rightarrow (\frac{4}{3})^{-}} \; \frac{f(t)-f(\frac{4}{3})}{t-\frac{4}{3}}
Editado pela última vez por Man Utd em Qua Jan 29, 2014 15:45, em um total de 4 vezes.
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Números Críticos

Mensagempor Cleyson007 » Ter Jan 28, 2014 20:00

Bom, havia pensado da seguinte forma:

g(t)=\left\{\begin{matrix}
3t-4,\,se\,3t-4\geq 0 & \\ 
 -(3t-4),\,se\,3t-4< 0& 
\end{matrix}\right.

Sei também que a deriada da primeira linha dará 3 e da segunda linha dará -3, mas não conclui o raciocínio.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Números Críticos

Mensagempor Russman » Ter Jan 28, 2014 23:16

O ponto crítico é em t=\frac{4}{3} pois neste a derivada não se define e este ponto pertence ao domínio de g(t).
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Números Críticos

Mensagempor Man Utd » Qua Jan 29, 2014 00:19

Cleyson007 escreveu:Bom, havia pensado da seguinte forma:

g(t)=\left\{\begin{matrix}
3t-4,\,se\,3t-4\geq 0 & \\ 
 -(3t-4),\,se\,3t-4< 0& 
\end{matrix}\right.

Sei também que a deriada da primeira linha dará 3 e da segunda linha dará -3, mas não conclui o raciocínio.


Vc fez a derivada em qual ponto ?
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Números Críticos

Mensagempor Cleyson007 » Qua Jan 29, 2014 08:11

Man Utd e Russman, estou pensando da seguinte forma:

A derivada de g é representada com o intervalo aberto, logo a derivada não está definida no ponto t = 4/3 que é o ponto crítico.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: