• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral imprópia

Integral imprópia

Mensagempor jccp » Sex Jan 17, 2014 15:18

''Prove que a integral\int_{0}^{\infty}Sen x/x dx é condicionalmente convergente.''
Tentei integrar de 0 a 1 e de 1 até infinito, mas começou a complicar e não entendi. Dá uma força aí, valeu.
jccp
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Out 06, 2013 14:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatua quimica
Andamento: cursando

Re: Integral imprópia

Mensagempor Man Utd » Sex Jan 17, 2014 20:26

jccp escreveu:''Prove que a integral\int_{0}^{\infty}Sen x/x dx é condicionalmente convergente.''
Tentei integrar de 0 a 1 e de 1 até infinito, mas começou a complicar e não entendi. Dá uma força aí, valeu.



eu entendi o que quis fazer, eu tbm tentei utilizar o critério da comparação em vão.Esta integral encontra-se na matéria de integrais impróprias msm?


Minha resolução:


Sabemos da teoria de transformada de laplace : \int_{0}^{+\infty} \; e^{-xy} \; 1 \; dy=\frac{1}{x}, então a nossa integral ficará:

\int_{0}^{+\infty} \; \int_{0}^{+\infty} \; e^{-xy} senx \; dydx


trocando a ordem de integração:

\int_{0}^{+\infty} \; \int_{0}^{+\infty} \; e^{-xy} senx \; dxdy


\int_{0}^{+\infty} \; \mathcal{L} \left\{ senx \right \} \; dy



Lembrando que \mathcal{L} \left\{ senx \right \} é uma notação para : \int_{0}^{+\infty} \; e^{-yx} senx \; dx.


\int_{0}^{+\infty} \; \frac{1}{y^2+1} \; dy

resolva para obter a resposta e concluir que é realmente convergente.
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.