• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Geometria Analítica] Exercício - URGENTE

[Geometria Analítica] Exercício - URGENTE

Mensagempor Pessoa Estranha » Qui Jan 09, 2014 15:37

Olá, pessoal! Não estou conseguindo resolver o seguinte exercício:

Obtenha o simétrico do ponto P em relação ao plano:
P=(1,4,2); ?:x-y+z-2=0

Por favor, pode ser só uma dica. Já tentei resolver várias vezes, mas não consigo.

Obrigada!
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Geometria Analítica] Exercício - URGENTE

Mensagempor anderson_wallace » Qui Jan 09, 2014 23:56

Inicialmente vamos lembrar da definição de equação geral do plano.

Seja P=({x}_{0},{y}_{0},{z}_{0}) um ponto do plano \pi e v=(a,b,c) um vetor ortogonal a \pi, a equação geral do plano \pi é definida como

ax+by+cz+d=0, onde d=-a{x}_{0}-b{y}_{0}-c{z}_{0}

Então note que com a equação geral vc tem um vetor ortogonal ao plano, que nesse caso é v=(1,-1,1)

Agora podemos encontrar uma reta ortogonal a \pi que passa pelo ponto P=(1,4,2), e como o ponto simétrico a P está contido nessa reta, ele pode ser escrito como {P}_{1}=(1+\lambda ,4-\lambda ,2+\lambda)(Verifique!).

Perceba que basta vc encontrar o valor para \lambda tal que a distância do ponto P ao plano \pi seja igual a distância do ponto P1 ao plano \pi.
anderson_wallace
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 25
Registrado em: Seg Dez 30, 2013 17:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: Ciência e Tecnologia
Andamento: cursando

Re: [Geometria Analítica] Exercício - URGENTE

Mensagempor Pessoa Estranha » Sex Jan 10, 2014 16:08

Olá! Obrigada por responder!

Bem, pensei assim também, mas fiquei na dúvida, pois como podemos garantir que o ponto P está na reta ortogonal ao plano? (não sei se estou dizendo um absurdo, mas podemos imaginar um plano "atravessado" por uma reta ortogonal e que não passa por P, não é?).

Desculpe, estou precisando estudar mais este conteúdo, mas foi o que pensei....

Obrigada!
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Geometria Analítica] Exercício - URGENTE

Mensagempor anderson_wallace » Sex Jan 10, 2014 16:45

Seu raciocínio faz todo sentido, afinal existem infinitas retas ortogonais ao plano \pi. Mas note o modo como essa reta em particular foi obtida. Inicialmente tomamos um vetor ortogonal ao plano que foi dado pela própria equação geral do plano \overrightarrow{v}=(1,-1,1), daí encontramos a reta ortogonal a \pi que tem como vetor diretor o vetor \overrightarrow{v}, e que passa pelo ponto P

r: (x,y,z)=(1,4,2)+\lambda(1,-1,1)\Rightarrow (x,y,z)=(1+\lambda,4-\lambda,2+\lambda)

Ou seja, na própria obtenção da reta definimos que ela passa pelo ponto P.
anderson_wallace
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 25
Registrado em: Seg Dez 30, 2013 17:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: Ciência e Tecnologia
Andamento: cursando

Re: [Geometria Analítica] Exercício - URGENTE

Mensagempor Pessoa Estranha » Sex Jan 10, 2014 19:06

Muito obrigada pela ajuda!

:y: :-D
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D