• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Geometria Analítica] Retas perpendiculares - Urgente!

[Geometria Analítica] Retas perpendiculares - Urgente!

Mensagempor Pessoa Estranha » Qua Jan 08, 2014 18:16

Olá, pessoal!

A questão é a seguinte:

"OBTENHA UMA EQUAÇÃO VETORIAL DA RETA s QUE CONTÉM P E É PERPENDICULAR À r, NOS CASOS:
(A) P=(2,6,1), r: X = (-3,0,0) + a(1,1,3)."

Como fiz:

P=(2,6,1),r:X=(-3,0,0)+?(1,1,3)
O nosso objetivo é encontrar as coordenadas do vetor diretor da reta s. Para tanto, basta aplicarmos o seguinte raciocínio: notemos que, como r e s são retas perpendiculares, então podemos afirmar que existe um ponto A pertencente à ambas. Assim, o ponto A pode ser escrito como (x,y,z)=(-3,0,0)+?(1,1,3) já que pertence à r; consequentemente temos: x= -3+ ?; y= ?; z=3?. Daí, PA=A-P=(-5+y,y-6,3y-1). Agora, notemos que, sendo PA perpendicular à r, vem: PA.r= (-5+y,y-6,3y-1).(1,1,3)= 0 ? -5+y+y-6+9y-3=0 ?11y=14 ?y=14/11. Logo, obtemos (x,y,z )=((-19)/11,14/11,42/11).

Resposta correta: (-41, -52, 31).

Por favor, ajudem!

Obrigada!
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Geometria Analítica] Retas perpendiculares - Urgente!

Mensagempor anderson_wallace » Qua Jan 08, 2014 20:28

Boa noite!

Seu raciocínio, assim como a maior parte da resolução da questão estão certos, mas no final acho que vc deve ter errado em conta.

De fato y=\frac{14}{11}

E como vc mesmo encontrou, o vetor diretor PA é do tipo (-5+y,y-6,3y-1)

Refaça as contas para encontrar as coordenadas de PA que vc vai chegar em (-\frac{41}{11},-\frac{52}{11},\frac{31}{11})

Daí basta multiplicar pelo escalar k=11 que vc chega na resposta certa.
anderson_wallace
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 25
Registrado em: Seg Dez 30, 2013 17:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: Ciência e Tecnologia
Andamento: cursando

Re: [Geometria Analítica] Retas perpendiculares - Urgente!

Mensagempor Pessoa Estranha » Qua Jan 08, 2014 20:34

Nossa! Muito Obrigada! Já estava começando a pensar que não tinha entendido nada com relação ao conteúdo. Obrigada! :y: :-D
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Geometria Analítica] Retas perpendiculares - Urgente!

Mensagempor Pessoa Estranha » Qua Jan 08, 2014 21:18

Olá! Será que você pode ajudar neste exercício também?

Obtenha uma equação vetorial da reta s que contém P e é perpendicular à r, no seguinte caso:
P=(1,0,1),r contém A=(0,0,1) e B=(1,0,0)
Primeiro, precisamos encontrar a equação vetorial da reta r. Para tanto, notemos que esta reta possui os pontos A e B dados e, portanto, podemos pensar no seguinte: AB=B-A=(1,0,0)- (0,0,1)=(1,0,-1), isto é, temos, então, as coordenadas do vetor AB. Desta forma, podemos considerar AB o vetor diretor da reta r. Assim, sua equação é dada por: r:X=(0,0,1)+?(0,0,-1). Agora, podemos obter a equação da reta s. Façamos analogamente ao exercício anterior.

Consideremos um ponto Q pertencente às duas retas em questão, r e s. Assim sendo, temos, a partir da equação da reta r, Q=(x,y,z)=(0,0,1)+?(0,0,-1)?x=0;y=0;z= 1-?. A partir disso, então, podemos afirmar que PQ=Q-P=(-1,0,-?). Encontremos o valor de ?.

Como PQ e r são perpendiculares, temos que PQ.r=0 ?(-1,0,-?).(0,0,1)= 0 ? -?=0 ? ?= 0.

Logo, PQ=Q-P=(-1,0,1-?)=(-1,0,0) pode ser considerado o vetor diretor da reta s, concluindo que a sua equação é dada por: s:X=(1,0,1)+ ?(-1,0,0).


Novamente está errado e já conferi as contas.

Resposta correta: (-1,0,-1).

Obrigada!
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Geometria Analítica] Retas perpendiculares - Urgente!

Mensagempor anderson_wallace » Qua Jan 08, 2014 21:44

Note que vc encontrou o vetor diretor AB como sendo AB=(1,0,-1) e na equação da reta vc escreveu esse mesmo vetor como (0,0,-1)

Não fiz as contas, mas acho que foi devido a isso que não chegou na resposta certa.
anderson_wallace
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 25
Registrado em: Seg Dez 30, 2013 17:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: Ciência e Tecnologia
Andamento: cursando

Re: [Geometria Analítica] Retas perpendiculares - Urgente!

Mensagempor Pessoa Estranha » Qui Jan 09, 2014 09:37

Está certo. É a falta de atenção. Obrigada! :y:
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: