• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Função exponencial e logaritmica] Problema

[Função exponencial e logaritmica] Problema

Mensagempor fff » Sáb Jan 04, 2014 12:02

Tenho dúvidas neste exercício:
Imagem
A 4.1a Q(t)={Q}_{o}{e}^{ln\frac{ln0.5}{25}t} e a 4.1bQ(n)={Q}_{o}{e}^{ln(0.5n)}.
Avatar do usuário
fff
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sáb Dez 21, 2013 11:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Informática
Andamento: cursando

Re: [Função exponencial e logaritmica] Problema

Mensagempor anderson_wallace » Seg Jan 06, 2014 12:11

Note que Q(25)=\frac{{Q}_{0}}{2} e por outro lado, temos que Q(25)={Q}_{0}{e}^{-25k}, de modo que ficamos com:

Q(25)=Q(25)\Rightarrow\frac{{Q}_{0}}{2}={Q}_{0}{e}^{-25k}\Rightarrow{e}^{-25k}=\frac{1}{2}\Rightarrow ln({e}^{-25k})=ln(\frac{1}{2})\Rightarrow(-25k)lne=ln(\frac{1}{2})\Rightarrow-k=\frac{ln(\frac{1}{2})}{25}, logo a equação modelagem em função de t fica, Q(t)={Q}_{0}{e}^{(\frac{ln(\frac{1}{2})}{25})t}

Agora para a letra b, precisamos fazer uma troca de variável. Observe que t=25n, desse modo temos,

Q(t)=Q(25n)={Q}_{0}{e}^{(\frac{ln(\frac{1}{2})}{25})25n}={Q}_{0}{e}^{ln(\frac{1}{2})n}, agora temos uma função na variável n, logo Q(n)={Q}_{0}{e}^{ln(\frac{1}{2})n}, mas note que

{Q}_{0}{e}^{ln(\frac{1}{2})n}\neq{Q}_{0}{e}^{ln(\frac{1}{2}n)}, logo minha resposta da b está diferente do seu gabarito o que realmente me deixou inseguro se cometi algum erro (que não consegui encontrar), mas seja como for, acho que a ideia para resolver a questão é essa mesmo.
anderson_wallace
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 25
Registrado em: Seg Dez 30, 2013 17:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: Ciência e Tecnologia
Andamento: cursando

Re: [Função exponencial e logaritmica] Problema

Mensagempor fff » Seg Jan 06, 2014 12:19

Muito obrigada :)
Avatar do usuário
fff
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sáb Dez 21, 2013 11:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Informática
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: