• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Cálculo] Exercício

[Cálculo] Exercício

Mensagempor Pessoa Estranha » Sáb Dez 28, 2013 15:45

Pessoal, estou com o exercício de um trabalho de Cálculo I para resolver, mas acho que a minha resposta está errada. Por favor, ajudem!

"Calcule a área da região limitada pela curva \rho = sen(2\theta)."

Deve-se trabalhar em coordenadas polares.

Não quero a resolução. Gostaria apenas de saber a resposta correta. A minha é \frac{16}{15}.

Obrigada!
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Cálculo] Exercício

Mensagempor Man Utd » Dom Dez 29, 2013 16:53

Olá :)

não está correto, de acordo com os meus cálculos o resultado certo é \frac{\pi}{4}
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: [Cálculo] Exercício

Mensagempor Pessoa Estranha » Seg Dez 30, 2013 09:19

Obrigada por responder!

Bem, vou tentar fazer novamente. *-)
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Cálculo] Exercício

Mensagempor Pessoa Estranha » Qui Jan 02, 2014 21:44

Olá!

Só agora voltei neste exercício e, o meu resultado foi \frac{\pi}{2}. Aplicando a integral, realmente chega-se a \frac{\pi}{4}, mas quando apliquei a fórmula para as coordenadas polares, deu resultado diferente.

Ainda estou errada ?
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Cálculo] Exercício

Mensagempor Man Utd » Sex Jan 03, 2014 17:24

Pessoa Estranha escreveu:Olá!

Só agora voltei neste exercício e, o meu resultado foi \frac{\pi}{2}. Aplicando a integral, realmente chega-se a \frac{\pi}{4}, mas quando apliquei a fórmula para as coordenadas polares, deu resultado diferente.

Ainda estou errada ?


Vc está certa o resultado é msm \frac{\pi}{2}, foi mal pelo engano :$ .

calculando a área de um laço e multiplicando por 4 obtemos a resposta:

4*\frac{1}{2}\int_{0}^{\frac{\pi}{2}} \; sen^{2} (2\theta) \; d\theta
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: [Cálculo] Exercício

Mensagempor Pessoa Estranha » Sex Jan 03, 2014 17:36

Sem problemas! De qualquer forma foi muito importante a sua ajuda! Obrigada mesmo! :y: :-D
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.