por Pessoa Estranha » Qua Jan 01, 2014 01:27
MOSTRAR QUE A AMPLITUDE DA ELIPSE É DADA POR

.
Minha resolução:
Consideremos PQ o segmento cuja medida é a amplitude da elipse. Conforme a definição da mesma e o Teorema de Pitágoras, considerando F1 e F2 os focos, temos:



Então:

---->
---->

Porém, pela definição, vem que:

E, aplicando no resultado, temos:

Já tentei resolver outras vezes, mas sempre cheguei no mesmo resultado. Qual é o erro? Por favor, ajudem!
Obrigada!
-
Pessoa Estranha
- Colaborador Voluntário

-
- Mensagens: 262
- Registrado em: Ter Jul 16, 2013 16:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por Renato_RJ » Qua Jan 01, 2014 09:37
Bom dia !!!
Você deseja provar a amplitude da elipse, também conhecida como latus rectum. Mas você somente calculou o semi latus rectum, isto é, apenas a metade, logo basta multiplicar o seu resultado por 2.

Abraços,
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
-

Renato_RJ
- Colaborador Voluntário

-
- Mensagens: 306
- Registrado em: Qui Jan 06, 2011 15:47
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Matemática
- Andamento: cursando
por Pessoa Estranha » Qua Jan 01, 2014 11:15
Bom dia! Feliz Ano Novo!
Obrigada por responder!
Agora eu entendi. Achava que a amplitude da elipse era só o tamanho do segmento perpendicular ao eixo focal e cujas extremidades eram um dos focos e um ponto pertencente à elipse. Estranho.... Acabei fixando a ideia e, agora, ficou esquisito....
Obrigada!

-
Pessoa Estranha
- Colaborador Voluntário

-
- Mensagens: 262
- Registrado em: Ter Jul 16, 2013 16:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por Renato_RJ » Qua Jan 01, 2014 15:15
Pessoa Estranha escreveu:Bom dia! Feliz Ano Novo!
Obrigada por responder!
Agora eu entendi. Achava que a amplitude da elipse era só o tamanho do segmento perpendicular ao eixo focal e cujas extremidades eram um dos focos e um ponto pertencente à elipse. Estranho.... Acabei fixando a ideia e, agora, ficou esquisito....
Obrigada!

Obrigado e um feliz ano novo para você também !!
[ ]'s
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
-

Renato_RJ
- Colaborador Voluntário

-
- Mensagens: 306
- Registrado em: Qui Jan 06, 2011 15:47
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Matemática
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Geometria Analítica] Elipse
por Pessoa Estranha » Seg Dez 30, 2013 09:37
- 0 Respostas
- 1065 Exibições
- Última mensagem por Pessoa Estranha

Seg Dez 30, 2013 09:37
Geometria Analítica
-
- [Geometria Analítica] Elipse
por Pessoa Estranha » Qui Jan 02, 2014 18:32
- 2 Respostas
- 1922 Exibições
- Última mensagem por Pessoa Estranha

Qui Jan 02, 2014 23:32
Geometria Analítica
-
- [Geometria Analítica] Elipse
por Pessoa Estranha » Qui Jan 02, 2014 18:39
- 0 Respostas
- 1055 Exibições
- Última mensagem por Pessoa Estranha

Qui Jan 02, 2014 18:39
Geometria Analítica
-
- [Desafio] Geometria Analítica - Elipse
por Pessoa Estranha » Qui Jan 02, 2014 18:43
- 1 Respostas
- 5377 Exibições
- Última mensagem por teabiofeul

Seg Out 05, 2015 08:42
Desafios Enviados
-
- [Desafio] Geometria Analítica - Elipse
por Pessoa Estranha » Qui Jan 02, 2014 18:47
- 0 Respostas
- 4067 Exibições
- Última mensagem por Pessoa Estranha

Qui Jan 02, 2014 18:47
Desafios Enviados
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.