• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Problema de Máximo] Dúvida

[Problema de Máximo] Dúvida

Mensagempor silviopuc » Seg Dez 23, 2013 20:09

Pessoal estou com dúvida no seguinte exercício:

Da folha circular corta-se setor circular de modo que se obtenha o funil conforme mostra a figura abaixo. Se o funil tem volume máximo, então o ângulo central \alpha, em radianos, é igual a:

fig1.jpg
figura
fig1.jpg (9.44 KiB) Exibido 1467 vezes


A resposta é: 2\pi\sqrt[]{\frac{2}{3}}

Eu cheguei na seguinte expressão para o volume do cone: V=\frac{\pi{R}^{3}}{3}\left(\frac{2\pi-\alpha}{2\pi} \right)^{2}\sqrt[]{1-\left(\frac{2\pi-\alpha}{2\pi} \right)^{2}}

Chamei y=\frac{2\pi-\alpha}{2\pi} \right), e reescrevi assim: y=\frac{\pi{R}^{3}}{3}{y}^{2}\sqrt[]{1-{y}^{2}}, com 0\leq y\leq1

Derivando obtive o ponto de máximo y=\sqrt[]{\frac{2}{3}}

Pois bem, já fiz um monte de cálculos e não chego no gabarito. Para chegar na fórmula do volume eu fiz assim:

\frac{2\pi R}{2\pi r}=\frac{2\pi}{2\pi-\alpha}\Rightarrow r=R\left(\frac{2\pi-\alpha}{2\pi} \right) e o H eu tirei por Pitágoras.

Não sei se fiz certo, pois considerei o meu cone obtido a partir da parte branca (já que subtraio \alpha) se é aqui que está meu erro, como consertá-lo e encontrar a resposta do gabarito?
silviopuc
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Ter Jan 15, 2013 12:41
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Problema de Máximo] Dúvida

Mensagempor young_jedi » Seg Dez 23, 2013 21:37

é exatamente ai que esta o seu erro
a parte que voce tem que considerar como o cone é a cinza

a forma de corrigir é simples

\frac{2\pi R}{2\pi r}=\frac{2\pi}{\alpha}

r=\frac{ \alpha R}{2\pi }
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Problema de Máximo] Dúvida

Mensagempor silviopuc » Seg Dez 23, 2013 22:33

Obrigado!

Devo ter esgotado os neurônios para chegar onde cheguei e fiquei sem eles para concluir. Fiz a alteração sugerida e deu certo.
silviopuc
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Ter Jan 15, 2013 12:41
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}