• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Mudança de variável em exercício de integração

Mudança de variável em exercício de integração

Mensagempor Skyliner » Qua Nov 25, 2009 23:02

Boas, estou com uma dúvida num exercício que está resolvido, por isso vou postar só a parte que tenho dúvida e que interessa!

\int_{-\infty}^{+\infty}{h}_{1}(t-\alpha) {h}_{2}(t-\tau-\alpha)d\alpha

Mudando a variável de integração para:
\beta=t-\alpha

\int_{+\infty}^{-\infty}{h}_{1}(\beta) {h}_{2}(\beta-\tau)\frac{d\alpha}{d\beta}d\beta

No exercício diz que\frac{d\alpha}{d\beta} = -1. Queria que alguém me explicasse porquê, deve ser algo trivial mas está a passar-me ao lado...

E já agora quais são as regras para a mudança de intervalo de integração com a mudança de variável?

Muito obrigado
Skyliner
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Nov 25, 2009 22:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Mudança de variável em exercício de integração

Mensagempor thadeu » Qui Nov 26, 2009 01:05

skiliner, se foi falado que \beta=t- \alpha\,\Rightarrow\,\alpha=t- \beta , então, a derivada dos dois membros da igualdade será d \alpha=d(t- \beta)

d \alpha=dt-d \beta , como t é considerado constante, o valor dt é zero, então ficará:

d \alpha= -d \beta\,\Rightarrow\,d \alpha=-1(d \beta)\,\Rightarrow\,\frac{d \alpha}{d \beta}=-1, pois eu passei apenas d \beta para o 1º membro
thadeu
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Out 19, 2009 14:05
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Mudança de variável em exercício de integração

Mensagempor Skyliner » Qui Nov 26, 2009 01:08

como eu tinha dito, era trivial, só que já estou com umas horas de estudo e há coisas que passam ao lado :-D

muito obrigado.
Skyliner
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Nov 25, 2009 22:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.