por Pessoa Estranha » Qua Dez 11, 2013 17:40
O exercício diz o seguinte:
"Com os algarismos 1, 2, 3, 4, 5, 6, 7, 8 e 9, quantos números de quatro algarismos existem, onde pelo menos dois algarismos são iguais ?"
Fiz assim:
Como dois dos quatro algarismos são iguais, então "fixei", primeiro, o número 1 e, então para os outros dois números temos nove opções de algarismo disponíveis (inclusive o 1, já que temos "pelo menos dois algarismos iguais"). Assim, para o número 1 repetido duas vezes, temos 81 sequências possíveis (1.1.9.9). Repetindo o raciocínio para os outros oito números, teremos, então, 81+81+81+...+81 = 9.81 = 729 sequências possíveis nas condições dadas.
Por favor, gostaria que alguém me ajudasse. A resposta correta é: 3537.
Obrigada.
-
Pessoa Estranha
- Colaborador Voluntário

-
- Mensagens: 262
- Registrado em: Ter Jul 16, 2013 16:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
Voltar para Análise Combinatória
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Análise combinatória [exercício]
por Valdemir Oliveira » Sáb Fev 09, 2013 01:23
- 4 Respostas
- 2816 Exibições
- Última mensagem por Valdemir Oliveira

Sáb Fev 09, 2013 21:28
Análise Combinatória
-
- [Analise combinatoria] exercicio
por amanda s » Sex Nov 15, 2013 20:17
- 0 Respostas
- 884 Exibições
- Última mensagem por amanda s

Sex Nov 15, 2013 20:17
Análise Combinatória
-
- [Análise Combinatória] Exercício
por Pessoa Estranha » Ter Dez 17, 2013 22:27
- 0 Respostas
- 1441 Exibições
- Última mensagem por Pessoa Estranha

Ter Dez 17, 2013 22:27
Análise Combinatória
-
- [Análise Combinatória] Exercício
por Pessoa Estranha » Ter Dez 17, 2013 22:35
- 8 Respostas
- 6327 Exibições
- Última mensagem por Pessoa Estranha

Qui Dez 19, 2013 09:00
Análise Combinatória
-
- Análise Combinatória - Dúvida em exercício
por carlosvinnicius » Ter Fev 08, 2011 23:01
- 1 Respostas
- 2954 Exibições
- Última mensagem por MarceloFantini

Ter Fev 08, 2011 23:30
Estatística
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.