• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Dependência Linear com Polinômios] Dúvida em exercício

[Dependência Linear com Polinômios] Dúvida em exercício

Mensagempor lanaamonteiro » Seg Dez 09, 2013 11:23

O enunciado da questão diz o seguinte:

"Verificar se o subconjunto de P4 (R) é LI ou LD:
W= {x(x-1), x³, 2x³-x², x}"

Eu tentei resolver da seguinte forma:

>> \alpha1*(x²-x) + \alpha2*(x³) + \alpha3*(2x³-x²) + \alpha4*(x)
>> (- \alpha1 + \alpha4)*x + ( \alpha1 - \alpha3)*x² + ( \alpha2 + 2*\alpha3)*x³
>> \alpha1 + \alpha4
\alpha1 - \alpha3
\alpha2 + 2*\alpha3
lanaamonteiro
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Dez 09, 2013 11:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng Civil
Andamento: cursando

Re: [Dependência Linear com Polinômios] Dúvida em exercício

Mensagempor Russman » Seg Dez 09, 2013 22:54

O conjunto será LI se qualquer um de seus elementos puder ser escrito como combinação de um ou mais dos mesmos. Assim, uma forma rápida de virificar é fazendo

ax(x+1) + bx^3+c(2x^3-x2)+dx=0

onde as veltras a,b,c e d são constantes reais.

Note que a solução é \left \{ a,b,c,d \right \}=c\left \{ 2,-1,1,-2 \right \} de modo que, não, o subconjunto não pode ser LI.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)