• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Dependência Linear com Polinômios] Dúvida em exercício

[Dependência Linear com Polinômios] Dúvida em exercício

Mensagempor lanaamonteiro » Seg Dez 09, 2013 11:23

O enunciado da questão diz o seguinte:

"Verificar se o subconjunto de P4 (R) é LI ou LD:
W= {x(x-1), x³, 2x³-x², x}"

Eu tentei resolver da seguinte forma:

>> \alpha1*(x²-x) + \alpha2*(x³) + \alpha3*(2x³-x²) + \alpha4*(x)
>> (- \alpha1 + \alpha4)*x + ( \alpha1 - \alpha3)*x² + ( \alpha2 + 2*\alpha3)*x³
>> \alpha1 + \alpha4
\alpha1 - \alpha3
\alpha2 + 2*\alpha3
lanaamonteiro
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Dez 09, 2013 11:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng Civil
Andamento: cursando

Re: [Dependência Linear com Polinômios] Dúvida em exercício

Mensagempor Russman » Seg Dez 09, 2013 22:54

O conjunto será LI se qualquer um de seus elementos puder ser escrito como combinação de um ou mais dos mesmos. Assim, uma forma rápida de virificar é fazendo

ax(x+1) + bx^3+c(2x^3-x2)+dx=0

onde as veltras a,b,c e d são constantes reais.

Note que a solução é \left \{ a,b,c,d \right \}=c\left \{ 2,-1,1,-2 \right \} de modo que, não, o subconjunto não pode ser LI.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.