• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada no ponto de descontinuidade - capacitor.

Derivada no ponto de descontinuidade - capacitor.

Mensagempor Sobreira » Dom Dez 08, 2013 14:27

Amigos,

Tenho a seguinte dúvida:

Há uma afirmação que no capacitor não pode haver variação brusca de tensão em seus terminais. Lendo no livro o autor justifica que isto não é possível pois haverá a necessidade de uma corrente infinita. Mas aí que não entendi:
Pelo meu entender isto parte do problema que a derivada estará no ponto de descontinuidade da função, ou seja, indefinido e nisto a corrente terá que ir a infinito para compensar.
Mas e quando não há variação de tensão ??? Quando o gráfico v/t é uma reta?? a derivada também será 0 e portanto precisaríamos de uma corrente infinita, ou seja, para uma tensão constante a corrente no capacitor seria infinito e não zero.
i=C\frac{dv}{dt}
Anexos
capacitor.jpg
capacitor.jpg (11.5 KiB) Exibido 7247 vezes
"The good thing about science is that it's true whether or not you believe in it."
Sobreira
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Sex Out 12, 2012 17:33
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: formado

Re: Derivada no ponto de descontinuidade - capacitor.

Mensagempor young_jedi » Ter Dez 10, 2013 17:52

no primeiro caso, em que ha descontinuidade da função nos temos que a derivada tende para infinito

\frac{dv}{dt}\to \infty

no caso da reta a derivada é igual a zero portanto a corrente é igual a zero.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.