BrunoLima escreveu:Boa noite santhiago, muito obrigado pela sua explicação consegui, com muita dificuldade compreender, mas você poderia mostrar melhor, a parte que vc diz ''(3) e por 1 obtemos" ?? pq ficou tudo elevado a m?
É verdade , acabei aproveitando o código errado da expressão que tinha m no expoente ,por isso o erro . Só para verificar , substituirmos

e

no sistema :
Temos :
![y^x = \left[ \left(\frac{m}{n}\right)^{m/(m-n)} \right]^{\left(\frac{m}{n}\right)^{n/(m-n)}} y^x = \left[ \left(\frac{m}{n}\right)^{m/(m-n)} \right]^{\left(\frac{m}{n}\right)^{n/(m-n)}}](/latexrender/pictures/de1db756dcefa00686be60028a829d8f.png)
.
Somente para simplificar as notações definamos

e

, desta forma

e
Para que ocorra a igualdade devemos impor

os b's se cancelam e temos

ou ainda

que é equivalente a

e novamente devemos impor que

e assim

Ora, mas

,logo

OK! ,isto significa a primeira equação do sistema é satisfeita para todo

e

reais distintos tais que

e

dependendo

( conforme já vimos que são eles ) .
E por outro lado ,
![x^m = \left[ \left(\frac{m}{n}\right)^{n/(m-n)}\right]^m = \left(\frac{m}{n}\right)^{nm/(m-n)} x^m = \left[ \left(\frac{m}{n}\right)^{n/(m-n)}\right]^m = \left(\frac{m}{n}\right)^{nm/(m-n)}](/latexrender/pictures/f94815b8315d97eb31b404d32b5e07e1.png)
e
![y^n = \left[ \left(\frac{m}{n}\right)^{m/(m-n)}\right]^n = \left(\frac{m}{n}\right)^{nm/(m-n)} y^n = \left[ \left(\frac{m}{n}\right)^{m/(m-n)}\right]^n = \left(\frac{m}{n}\right)^{nm/(m-n)}](/latexrender/pictures/f5fe14d5c7bd8ff7fce5894ac28884b5.png)
a assim a segunda equação do sistema também é satisfeita para todo

e

reais distintos tais que

e

dependendo

.
Agora façamos uma observação : Se

então

,e
não dependem da escolha de

.
Em linguagem de conjuntos , o conjunto solução seria dado por

onde
e
