• Anúncio Global
    Respostas
    Exibições
    Última mensagem

conjuntos

conjuntos

Mensagempor israel jonatas » Seg Dez 02, 2013 12:08

Quatro amigos, Abel, Bruno, Caio e Daniel, são colecionadores de figurinhas. Sabe-se que Abel possui metade da quantidade de figurinha de Daniel mais um terço da quantidade de figurinhas de Caio; que Bruno possui o dobro da quantidade de Caio mais quarta parte da quantidade de figurinhas de Daniel; que Daniel tem 60 figurinhas, e que Abel e Bruno possuem a mesma quantidade de figurinhas. Os quatro amigos possuem, juntos:

a) 125
b) 128
c) 130
d) 132
e) 135
israel jonatas
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Mar 14, 2013 13:04
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: conjuntos

Mensagempor Iniciante » Ter Abr 01, 2014 03:41

Considerando: Abel = A, Bruno = B, Caio = C, e Daniel = D, temos:
A =\frac{D}{2} + \frac{C}{3}     \;\;\;\;\;\;\;\;\;\;\;\;\;\;B = 2C +\frac{D}{4}    \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;C = ?


Pelo enunciado, temos D = 60 e A = B. Então:
\frac{D}{2} + \frac{C}{3}  =  2C + \frac{D}{4}

Substituindo:
30 +  \frac{C}{3} = 2C + 15
=> 2C -  \frac{C}{3} = 15

Por mmc, obtemos:
\frac{6C - C}{3} = 15
\;\;\;\;\;\;=> 5C = 45
\;\;\;\;\;\;\;\;\;\;=> C = 9

Logo, os quatro amigos possuem, juntos:
33 + 33 + 60 + 9 = 135

Alternativa e)
Iniciante
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Mar 28, 2014 18:57
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: conjuntos

Mensagempor israel jonatas » Sáb Abr 19, 2014 11:10

Iniciante escreveu:Considerando: Abel = A, Bruno = B, Caio = C, e Daniel = D, temos:
A =\frac{D}{2} + \frac{C}{3}     \;\;\;\;\;\;\;\;\;\;\;\;\;\;B = 2C +\frac{D}{4}    \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;C = ?


Pelo enunciado, temos D = 60 e A = B. Então:
\frac{D}{2} + \frac{C}{3}  =  2C + \frac{D}{4}

Substituindo:
30 +  \frac{C}{3} = 2C + 15
=> 2C -  \frac{C}{3} = 15

Por mmc, obtemos:
\frac{6C - C}{3} = 15
\;\;\;\;\;\;=> 5C = 45
\;\;\;\;\;\;\;\;\;\;=> C = 9

Logo, os quatro amigos possuem, juntos:
33 + 33 + 60 + 9 = 135

Alternativa e)
Iniciante escreveu:Considerando: Abel = A, Bruno = B, Caio = C, e Daniel = D, temos:
A =\frac{D}{2} + \frac{C}{3}     \;\;\;\;\;\;\;\;\;\;\;\;\;\;B = 2C +\frac{D}{4}    \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;C = ?


Pelo enunciado, temos D = 60 e A = B. Então:
\frac{D}{2} + \frac{C}{3}  =  2C + \frac{D}{4}

Substituindo:
30 +  \frac{C}{3} = 2C + 15
=> 2C -  \frac{C}{3} = 15

Por mmc, obtemos:
\frac{6C - C}{3} = 15
\;\;\;\;\;\;=> 5C = 45
\;\;\;\;\;\;\;\;\;\;=> C = 9

Logo, os quatro amigos possuem, juntos:
33 + 33 + 60 + 9 = 135

Alternativa e)


Valeu !
israel jonatas
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Mar 14, 2013 13:04
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Conjuntos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: