por BrunoLima » Dom Nov 24, 2013 21:31
Alguém pode dar uma sugestão? eu sei que tenho que dividir a equação, e depois fazer uma substituição.. bem foi o que o autor fez.. mas não estou conseguindo aplicar o conceito..

Então galera editando aqui.. eu dividi tudo por 6^x aí ficou

fazendo (2/3)^x = y eu econtrei a seguinte equação do segundo grau

Ráizes= 9/4 e -2
-2 >> não convém 9/4 = (2/3)^x x=-2
Então galera eu consegui chegar a resposta do gabarito pois vi uma resolução parecida em um fórum e decidi tentar, como eu sou novo no fórum não sei muito bem o que fazer... se algum moderador quiser excluir tudo bem, se não, a questão está aí para quem estiver procurando, ou para alguém opinar uma resolução diferente..
-
BrunoLima
- Usuário Ativo

-
- Mensagens: 22
- Registrado em: Sex Nov 22, 2013 23:52
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Vestibulando militar
- Andamento: cursando
por DanielFerreira » Seg Nov 25, 2013 00:00
Boa noite!
Inicialmente, devemos desenvolver a equação:

A fim de facilitar a visualização da equação, substituí

e

respectivamente por

e

, onde

é a variável e

uma constante qualquer, daí, resta-nos resolver a equação de grau 2.

Já que concluiu/resolveu, não vejo por que terminar!
Até.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por BrunoLima » Seg Nov 25, 2013 00:09
olá danrj, achei interessante sua resolução, Obrigado por ajudar ^^
-
BrunoLima
- Usuário Ativo

-
- Mensagens: 22
- Registrado em: Sex Nov 22, 2013 23:52
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Vestibulando militar
- Andamento: cursando
por DanielFerreira » Sex Nov 29, 2013 00:13
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Equação exponencial Iezzi B.69
por BrunoLima » Sáb Nov 23, 2013 00:06
- 9 Respostas
- 5479 Exibições
- Última mensagem por Addlink1114

Ter Ago 18, 2015 04:56
Equações
-
- Equação exponencial iezzi 71
por BrunoLima » Sáb Nov 23, 2013 21:38
- 5 Respostas
- 2195 Exibições
- Última mensagem por BrunoLima

Dom Nov 24, 2013 00:00
Equações
-
- [Radiciação] livro 2 do Iezzi- exercicio
por edilviana » Qui Fev 16, 2012 11:39
- 1 Respostas
- 1697 Exibições
- Última mensagem por edilviana

Qui Fev 16, 2012 12:35
Álgebra Elementar
-
- Sistema de Equações exponenciais (iezzi)
por BrunoLima » Ter Nov 26, 2013 16:05
- 6 Respostas
- 3655 Exibições
- Última mensagem por e8group

Qua Nov 27, 2013 13:56
Equações
-
- Sistema de Equações exponenciais. iezzi
por BrunoLima » Ter Dez 03, 2013 16:12
- 3 Respostas
- 2098 Exibições
- Última mensagem por e8group

Qua Dez 04, 2013 14:32
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.