• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação exponencial iezzi 78

Equação exponencial iezzi 78

Mensagempor BrunoLima » Dom Nov 24, 2013 21:31

Alguém pode dar uma sugestão? eu sei que tenho que dividir a equação, e depois fazer uma substituição.. bem foi o que o autor fez.. mas não estou conseguindo aplicar o conceito..

2^{2x+2}-6^x-2.3^{2x+2}=0

Então galera editando aqui.. eu dividi tudo por 6^x aí ficou

4(\frac{2}{3})^x-18(\frac{3}{2})^x-1=0

fazendo (2/3)^x = y eu econtrei a seguinte equação do segundo grau

4y^2-y-18=0

Ráizes= 9/4 e -2
-2 >> não convém 9/4 = (2/3)^x x=-2

Então galera eu consegui chegar a resposta do gabarito pois vi uma resolução parecida em um fórum e decidi tentar, como eu sou novo no fórum não sei muito bem o que fazer... se algum moderador quiser excluir tudo bem, se não, a questão está aí para quem estiver procurando, ou para alguém opinar uma resolução diferente..
BrunoLima
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Sex Nov 22, 2013 23:52
Formação Escolar: ENSINO MÉDIO
Área/Curso: Vestibulando militar
Andamento: cursando

Re: Equação exponencial iezzi 78

Mensagempor DanielFerreira » Seg Nov 25, 2013 00:00

Boa noite!

Inicialmente, devemos desenvolver a equação:

\\ 2^{2x + 2} - 6^x - 2 \cdot 3^{2x + 2} = 0 \\\\ 2^{2x} \cdot 2^2 - \left ( 2 \cdot 3 \right )^x - 2 \cdot 3^{2x} \cdot 3^2 = 0 \\\\ 4 \cdot 2^{2x} - 2^x \cdot 3^x - 18 \cdot 3^{2x} = 0

A fim de facilitar a visualização da equação, substituí 2^x e 3^x respectivamente por \alpha e \beta, onde \alpha é a variável e \beta uma constante qualquer, daí, resta-nos resolver a equação de grau 2.

\\ 4 \cdot 2^{2x} - 2^x \cdot 3^x - 18 \cdot 3^{2x} = 0 \\\\ 4\alpha^2 - \alpha\beta - 18\beta^2 = 0 \\\\ \Delta = \beta^2 + 288\beta^2 \\\\ \Delta = 289\beta^2 \\\\ \alpha = \frac{\beta \pm \sqrt{289\beta^2}}{8} \Rightarrow \alpha = \frac{\beta \pm 17\beta}{8} \\\\\\ \alpha' = \frac{\beta + 17\beta}{8} \Rightarrow \boxed{\alpha' = \frac{9\beta}{4}} \\\\\\ \alpha'' = \frac{\beta - 17\beta}{8} \Rightarrow \boxed{\alpha'' = - 2\beta}

Já que concluiu/resolveu, não vejo por que terminar!

Até.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Equação exponencial iezzi 78

Mensagempor BrunoLima » Seg Nov 25, 2013 00:09

olá danrj, achei interessante sua resolução, Obrigado por ajudar ^^
BrunoLima
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Sex Nov 22, 2013 23:52
Formação Escolar: ENSINO MÉDIO
Área/Curso: Vestibulando militar
Andamento: cursando

Re: Equação exponencial iezzi 78

Mensagempor DanielFerreira » Sex Nov 29, 2013 00:13

:y:
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?