• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Aritmética] Números Complexos

[Aritmética] Números Complexos

Mensagempor Pessoa Estranha » Dom Out 06, 2013 17:15

Calcule:

{\left(\frac{\sqrt[]{3}}{2}-\frac{1}{2}i \right)}^{100}.
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Aritmética] Números Complexos

Mensagempor PedroCunha » Qua Nov 27, 2013 22:01

Passando para a forma trigonométrica, temos:

\left(\frac{\sqrt3}{2} - \frac{1}{2}i \right) = \cos \frac{11\pi}{6} + i\sin \frac{11\pi}{6}

Agora, da Primeira Lei de Moivre, temos: (Vou chamar esse número complexo de z )

\\ z^{100} = \cos 100 \cdot \frac{11\pi}{6} + i\sin 100 \cdot \frac{11\pi}{6} \therefore z^{100} = \cos \frac{1100\pi}{6} + i\sin \frac{1100\pi}{6} \therefore \\\\ z^{100} = \cos \frac{4\pi}{3} + i\sin \frac{4\pi}{3} \therefore  \boxed{\boxed{z^{100} = -\frac{1}{2} - \frac{\sqrt3}{2}i }}

É isso.

Att.,
Pedro
PedroCunha
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Dom Set 23, 2012 11:29
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Aritmética

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.