• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[limite]Limite de duas variaveis

[limite]Limite de duas variaveis

Mensagempor amigao » Seg Nov 25, 2013 18:14

Como faz esse limite, pela minha resolução seria Não existe, mas wolframalpha fala que seria 0. Me ajuda por favor?
Anexos
MSP33251de5ic0ba75b734400001c4g340ggc4881dd.gif
MSP33251de5ic0ba75b734400001c4g340ggc4881dd.gif (897 Bytes) Exibido 3282 vezes
amigao
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Sáb Mai 11, 2013 11:52
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [limite]Limite de duas variaveis

Mensagempor e8group » Seg Nov 25, 2013 19:03

Repare que x^2 \leq  x^2 + y^2 ,isto por sua vez implica | \frac{x^2}{x^2+y^2}  | \leq 1 desde que (x,y) \neq (0,0) .Assim segue a função de duas variáveis definida pela expressão entre módulo é limitada por 1 .Aplicando propriedades de limite obterá o resultado desejado.
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [limite]Limite de duas variaveis

Mensagempor amigao » Seg Nov 25, 2013 19:45

santhiago escreveu:Repare que x^2 \leq  x^2 + y^2 ,isto por sua vez implica | \frac{x^2}{x^2+y^2}  | \leq 1 desde que (x,y) \neq (0,0) .Assim segue a função de duas variáveis definida pela expressão entre módulo é limitada por 1 .Aplicando propriedades de limite obterá o resultado desejado.


eu não entendi porque | \frac{x^2}{x^2+y^2}  | \leq 1 se a função tem denominador x^4 + x^2
amigao
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Sáb Mai 11, 2013 11:52
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [limite]Limite de duas variaveis

Mensagempor e8group » Seg Nov 25, 2013 20:17

Tem razão . Falta de atenção minha .Neste caso é possível ver que o limite não existe ,experimente aproximar do ponto (0,0) pela reta y=x e pela parábola y=x^2 . Passando ao limite com x \to 0 obterá dois resultados resultados distintos .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [limite]Limite de duas variaveis

Mensagempor amigao » Ter Nov 26, 2013 19:36

Consegui, muito obrigado pela ajuda
amigao
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Sáb Mai 11, 2013 11:52
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 12:41

pessoal eu achei como resultado 180 toneladas,entretanto sei que a questão está erra pela lógica e a resposta correta segundo o gabarito é 1.800 toneladas.
me explique onde eu estou pecando na questão. resolva explicando.

78 – ( CEFET – 1993 ) Os desabamentos, em sua maioria, são causados por grande acúmulo de lixo nas encostas dos morros. Se 10 pessoas retiram 135 toneladas de lixo em 9 dias, quantas toneladas serão retiradas por 40 pessoas em 30 dias ?


Assunto: dúvida em uma questão em regra de 3!
Autor: Douglasm - Qui Jul 01, 2010 13:16

Observe o raciocínio:

10 pessoas - 9 dias - 135 toneladas

1 pessoa - 9 dias - 13,5 toneladas

1 pessoa - 1 dia - 1,5 toneladas

40 pessoas - 1 dia - 60 toneladas

40 pessoas - 30 dias - 1800 toneladas


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:18

pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:21

leandro moraes escreveu:pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.

valeu meu camarada.