por amigao » Seg Nov 25, 2013 18:14
Como faz esse limite, pela minha resolução seria Não existe, mas wolframalpha fala que seria 0. Me ajuda por favor?
- Anexos
-

- MSP33251de5ic0ba75b734400001c4g340ggc4881dd.gif (897 Bytes) Exibido 3032 vezes
-
amigao
- Usuário Dedicado

-
- Mensagens: 28
- Registrado em: Sáb Mai 11, 2013 11:52
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por e8group » Seg Nov 25, 2013 19:03
Repare que

,isto por sua vez implica

desde que

.Assim segue a função de duas variáveis definida pela expressão entre módulo é limitada por

.Aplicando propriedades de limite obterá o resultado desejado.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por amigao » Seg Nov 25, 2013 19:45
santhiago escreveu:Repare que

,isto por sua vez implica

desde que

.Assim segue a função de duas variáveis definida pela expressão entre módulo é limitada por

.Aplicando propriedades de limite obterá o resultado desejado.
eu não entendi porque

se a função tem denominador

-
amigao
- Usuário Dedicado

-
- Mensagens: 28
- Registrado em: Sáb Mai 11, 2013 11:52
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por e8group » Seg Nov 25, 2013 20:17
Tem razão . Falta de atenção minha .Neste caso é possível ver que o limite não existe ,experimente aproximar do ponto

pela reta

e pela parábola

. Passando ao limite com

obterá dois resultados resultados distintos .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por amigao » Ter Nov 26, 2013 19:36
Consegui, muito obrigado pela ajuda
-
amigao
- Usuário Dedicado

-
- Mensagens: 28
- Registrado em: Sáb Mai 11, 2013 11:52
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limite] Limite de duas variáveis
por hygorvv » Dom Jun 30, 2013 09:31
- 1 Respostas
- 1880 Exibições
- Última mensagem por Man Utd

Ter Jul 29, 2014 19:20
Cálculo: Limites, Derivadas e Integrais
-
- Limite de duas variaveis
por Tixa11 » Seg Abr 01, 2013 13:13
- 1 Respostas
- 2049 Exibições
- Última mensagem por young_jedi

Qua Abr 03, 2013 11:09
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Duas variaveis
por fabriel » Sáb Jun 15, 2013 16:48
- 2 Respostas
- 2322 Exibições
- Última mensagem por temujin

Sáb Jun 15, 2013 19:10
Cálculo: Limites, Derivadas e Integrais
-
- Limite de Função de Duas Variáveis
por raimundoocjr » Qui Out 10, 2013 22:29
- 0 Respostas
- 1564 Exibições
- Última mensagem por raimundoocjr

Qui Out 10, 2013 22:29
Cálculo: Limites, Derivadas e Integrais
-
- [Limite - Duas Variáveis (Indeterminação)]
por raimundoocjr » Qui Out 17, 2013 21:55
- 1 Respostas
- 3529 Exibições
- Última mensagem por Man Utd

Ter Jun 17, 2014 13:05
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.