• Anúncio Global
    Respostas
    Exibições
    Última mensagem

PARAMETRIZAÇÃO DE CURVAS

PARAMETRIZAÇÃO DE CURVAS

Mensagempor sasuyanli » Sáb Out 26, 2013 12:14

Uma haste presa na origem do plano xy, ocupa a posição da reta x=ty. A haste intercepta a reta y=4 no ponto S e a elipse 4x²+(y-2)²=4 no ponto Q. Quando t varia, o vértice P do triângulo retângulo QPS descreve uma curva.

a) Escreva equações paramétricas dessa curva, em função do parâmetro t.

Não consegui chegar no resultado do gabarito dessa questão.
Fiz o seguinte:
Se y=4 e x=yt, então x(t)=4t.

E se a equação da elipse é definida por:
[tex]4x^2+(y-2)^2=4\Rightarrow x^2+\frac{(y-2)^2}{4}=1\Rightarrow y^2t^2+\frac{y^2-4y+4}{4}=1\Rightarrow 4y^2t^2 + y^2- 4y +4 = 4 \Rightarrow 4y^2t^2 + y^2- 4y=0\Rightarrow y =\frac{x}{t} \Rightarrow \frac{x^2}{t^2} + 4x^2 - 4\frac{x}{t}=0 \Rightarrow x\left(\frac{x}{t^2} + 4x - \frac{4}{t} \right)=0 \Rightarrow \frac{x}{t^2} + 4x - \frac{4}{t}=0 \Rightarrow x\left(4+\frac{1}{t^2} \right)=\frac{4}{t} \Rightarrow x= \frac{4}{t}\ \times \frac{1}{\left 4t^2+1 \right} \Rightarrow y =\frac{4}{1+4t^2}

Porém, no gabarito a equação paramétrica da curva é 4t, \frac{4}{4+4t^2}
Gostaria de uma ajuda para saber onde errei.
Obrigada.
sasuyanli
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Seg Jul 29, 2013 14:53
Formação Escolar: GRADUAÇÃO
Área/Curso: FÍSICA
Andamento: cursando

Re: PARAMETRIZAÇÃO DE CURVAS

Mensagempor e8group » Dom Nov 03, 2013 14:31

Também estou com a mesma dúvida ,resolvi este exercício da seguinte forma :

Supondo que a curva C (obtida pelo deslocamento do vértice P) tenha uma parametrização dada por \sigma : t \mapsto  \sigma(t) = (x(t),y(t)) . Como o ponto Q pertence simultaneamente a elipse e a reta yt=x dada .Então , fazendo as contas conforme você fez , vamos obter Q = ( \frac{4t}{1+4t^2} , \frac{4}{1+4t^2} ) . Ora , os pontos Q,S,P estão variando em conjunto de modo a preservar a ortogonalidade entre \vec{PS} e \vec{PQ} (estou utilizando este argumento para utilizar o próximo resultado afirmando que as ordenadas entre P,Q são iguais ) à medida que t varia . Logo ,

Q = ( \frac{4t}{1+4t^2} , y(t) ) , P = (x(t) , y(t) ) , S =(x(t),4) com y(t) = \frac{4}{1+4t^2} .

E facilmente obtemos x(t) = 4t pelo que o ponto S pertence as duas retas dadas .

Vou conversar com meu prof. de cal. sobre este exercício .Obtendo resultados postarei .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}