por sasuyanli » Sáb Out 26, 2013 12:14
Uma haste presa na origem do plano xy, ocupa a posição da reta x=ty. A haste intercepta a reta y=4 no ponto S e a elipse 4x²+(y-2)²=4 no ponto Q. Quando t varia, o vértice P do triângulo retângulo QPS descreve uma curva.
a) Escreva equações paramétricas dessa curva, em função do parâmetro t.
Não consegui chegar no resultado do gabarito dessa questão.
Fiz o seguinte:
Se y=4 e x=yt, então x(t)=4t.
E se a equação da elipse é definida por:
![[tex]4x^2+(y-2)^2=4\Rightarrow x^2+\frac{(y-2)^2}{4}=1\Rightarrow y^2t^2+\frac{y^2-4y+4}{4}=1\Rightarrow 4y^2t^2 + y^2- 4y +4 = 4 \Rightarrow 4y^2t^2 + y^2- 4y=0\Rightarrow y =\frac{x}{t} \Rightarrow \frac{x^2}{t^2} + 4x^2 - 4\frac{x}{t}=0 \Rightarrow x\left(\frac{x}{t^2} + 4x - \frac{4}{t} \right)=0 \Rightarrow \frac{x}{t^2} + 4x - \frac{4}{t}=0 \Rightarrow x\left(4+\frac{1}{t^2} \right)=\frac{4}{t} \Rightarrow x= \frac{4}{t}\ \times \frac{1}{\left 4t^2+1 \right} \Rightarrow y =\frac{4}{1+4t^2} [tex]4x^2+(y-2)^2=4\Rightarrow x^2+\frac{(y-2)^2}{4}=1\Rightarrow y^2t^2+\frac{y^2-4y+4}{4}=1\Rightarrow 4y^2t^2 + y^2- 4y +4 = 4 \Rightarrow 4y^2t^2 + y^2- 4y=0\Rightarrow y =\frac{x}{t} \Rightarrow \frac{x^2}{t^2} + 4x^2 - 4\frac{x}{t}=0 \Rightarrow x\left(\frac{x}{t^2} + 4x - \frac{4}{t} \right)=0 \Rightarrow \frac{x}{t^2} + 4x - \frac{4}{t}=0 \Rightarrow x\left(4+\frac{1}{t^2} \right)=\frac{4}{t} \Rightarrow x= \frac{4}{t}\ \times \frac{1}{\left 4t^2+1 \right} \Rightarrow y =\frac{4}{1+4t^2}](/latexrender/pictures/0adb4051dcf9476c38bc2f185a07c3db.png)
Porém, no gabarito a equação paramétrica da curva é

Gostaria de uma ajuda para saber onde errei.
Obrigada.
-
sasuyanli
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Seg Jul 29, 2013 14:53
- Formação Escolar: GRADUAÇÃO
- Área/Curso: FÍSICA
- Andamento: cursando
por e8group » Dom Nov 03, 2013 14:31
Também estou com a mesma dúvida ,resolvi este exercício da seguinte forma :
Supondo que a curva

(obtida pelo deslocamento do vértice P) tenha uma parametrização dada por

. Como o ponto

pertence simultaneamente a elipse e a reta

dada .Então , fazendo as contas conforme você fez , vamos obter

. Ora , os pontos

estão variando em conjunto de modo a preservar a ortogonalidade entre

e

(estou utilizando este argumento para utilizar o próximo resultado afirmando que as ordenadas entre P,Q são iguais ) à medida que

varia . Logo ,

com

.
E facilmente obtemos

pelo que o ponto

pertence as duas retas dadas .
Vou conversar com meu prof. de cal. sobre este exercício .Obtendo resultados postarei .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [CURVAS] CÁLC II - Trajetórias e Parametrização
por inkz » Ter Nov 20, 2012 01:12
- 6 Respostas
- 4332 Exibições
- Última mensagem por inkz

Ter Nov 20, 2012 11:53
Cálculo: Limites, Derivadas e Integrais
-
- [CURVAS] Parametrização de elipse e vetores tangentes
por inkz » Ter Nov 20, 2012 04:43
- 2 Respostas
- 2756 Exibições
- Última mensagem por inkz

Qua Nov 21, 2012 03:25
Cálculo: Limites, Derivadas e Integrais
-
- Cálculo - Parametrização
por Feliperpr » Ter Abr 24, 2012 21:14
- 12 Respostas
- 7486 Exibições
- Última mensagem por Feliperpr

Ter Abr 24, 2012 22:18
Cálculo: Limites, Derivadas e Integrais
-
- Parametrização de superfície
por AllanGeoffroy » Ter Mar 05, 2013 11:56
- 0 Respostas
- 892 Exibições
- Última mensagem por AllanGeoffroy

Ter Mar 05, 2013 11:56
Cálculo: Limites, Derivadas e Integrais
-
- [Cálculo Vetorial - Parametrização] - Reta
por anselmojr97 » Dom Mar 20, 2016 01:25
- 0 Respostas
- 2510 Exibições
- Última mensagem por anselmojr97

Dom Mar 20, 2016 01:25
Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.