• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[EQUAÇÃO DIFERENCIAL] Forma separavel

[EQUAÇÃO DIFERENCIAL] Forma separavel

Mensagempor fabriel » Sáb Nov 02, 2013 12:40

Oi pessoal tudo bem.
bom tenho a seguinte EDO:
\frac{dy}{dx}=\frac{xy+3x-y-3}{xy-2x+4y-8}
Só que não consigo separar isso, para depois integrar... em relação as respectivas variaveis.

A resposta é y-5ln\left|y+3 \right|=x-5ln\left|x+4 \right|+c

Só preciso saber como manipular a equação \frac{dy}{dx}=\frac{xy+3x-y-3}{xy-2x+4y-8}, para poder integrar depois.
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
Avatar do usuário
fabriel
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 88
Registrado em: Ter Mai 22, 2012 16:04
Localização: Chapadão do Sul-MS
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: [EQUAÇÃO DIFERENCIAL] Forma separavel

Mensagempor e8group » Sáb Nov 02, 2013 19:09

Dica :

xy +3x - y - 3  =  x(y+3) + (-1)(y+3) =  (y+3)(x-1)

xy-2x+4y - 8  =  x(y-2) + 4(y-2)  =  (y-2)(x+4) .

Utilizando os resultados acima , conseguirá reescrever a EDO sob a forma : y' = \frac{f(x)}{g(y)} . Tente concluir e comente as dúvidas .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.