• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Aritmética] Números Complexos

[Aritmética] Números Complexos

Mensagempor Pessoa Estranha » Dom Out 06, 2013 14:25

Determine os complexos z tais que:

{z}^{3}= conjugado de z.
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Aritmética] Números Complexos

Mensagempor Taka » Dom Nov 03, 2013 09:23

Sendo z = a+bi, se {z}^{3}=conj(z), e conj(z)=a-bi, então temos:

{(a+bi)}^{3}=a-bi
{a}^{3}+3{a}^{2}bi+3a{(bi)}^{2}+{(bi)}^{3} = a-bi
{a}^{3}+3{a}^{2}-3a{b}^{2}-bi=a-bi
{a}^{3}+3{a}^{2}-3a{b}^{2}-a=0
a({a}^{2}+3a-3{b}^{2}-1)=0

Logo, a=0 ou b=+\sqrt[]{\frac{{a}^{2}+3a-1}{3}} ou b=-\sqrt[]{\frac{{a}^{2}+3a-1}{3}}.

Portanto, z=bi ou z=a+\sqrt[]{\frac{{a}^{2}+3a-1}{3}}i ou z=a-\sqrt[]{\frac{{a}^{2}+3a-1}{3}}i
Taka
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sáb Nov 02, 2013 16:33
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Química
Andamento: cursando

Re: [Aritmética] Números Complexos

Mensagempor Pessoa Estranha » Dom Nov 03, 2013 11:09

Valeu! :y:
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Aritmética

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.