• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Equação Trigonométrica]Como resolver

[Equação Trigonométrica]Como resolver

Mensagempor mthc10 » Sáb Out 05, 2013 00:15

Olá amigos, estava resolvendo um problema e no final me deparei com a seguinte expressão:

-5sen(\theta) + 2cos(\theta)= 0,8155

Preciso encontrar o valor de Theta(obvio hahaha). Não tive nenhuma ideia e nem lembro de alguma identidade trigonométrica que resolva tal equação, se alguém puder ajudar na solução ficarei grato!
mthc10
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Mai 21, 2013 23:46
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharel em Engenharia Elétrica
Andamento: cursando

Re: [Equação Trigonométrica]Como resolver

Mensagempor Bravim » Sáb Out 05, 2013 15:19

~.~
Editado pela última vez por Bravim em Dom Out 06, 2013 02:36, em um total de 4 vezes.
Imagem
Avatar do usuário
Bravim
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Qui Out 03, 2013 03:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [Equação Trigonométrica]Como resolver

Mensagempor mthc10 » Dom Out 06, 2013 01:09

Amigo, o intervalo é de 0º à 360º.
Sendo assim, utilizando a fórmula que você deixou para eu calcular no intervalo de 0 até 2pi eu obtenho como resposta 20.37º. Porém, quando substituo este valor na equação original ela não satisfaz a igualdade...

Eu sei que a resposta que satisfaz a equação para o intervalo citado é 13,09º. Só não consigo chegar precisamente a este valor...
mthc10
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Mai 21, 2013 23:46
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharel em Engenharia Elétrica
Andamento: cursando

Re: [Equação Trigonométrica]Como resolver

Mensagempor Bravim » Dom Out 06, 2013 02:31

Você está completamente certo! Desculpe devo ter errado em alguma substituição.
Bem, dessa vez vou chamar 0.8155=a para evitar de me confundir.
4cos^2(x)=a^2+25sin^2(x)+10asin(x)
utilizando a relação fundamental: sin^2(x)+cos^2(x)=1
4-4sin^2(x)=a^2+25sin^2(x)+10asin(x)
29sin^2(x)+10asin(x)+a^2-4=0
sin(x)=\frac{-10a\pm\sqrt[]{464-16a^2}}{58}
sin(x)=\frac{-5a\pm 2*\sqrt[]{29-a^2}}{29}
x=arcsin(\frac{-5a\pm 2*\sqrt[]{29-a^2}}{29})
Neste caso ter-se-á as mesmas condições
Imagem
Avatar do usuário
Bravim
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Qui Out 03, 2013 03:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [Equação Trigonométrica]Como resolver

Mensagempor mthc10 » Dom Out 06, 2013 22:40

Valeu irmão! Eu tava achando 13,7 pela aproximação que a calculadora faz, mas quando tu chamou de a o valor pequeno, não deu mais problemas!
Valeu mesmo!
mthc10
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Mai 21, 2013 23:46
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharel em Engenharia Elétrica
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.