• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Matrizes] Duvida

[Matrizes] Duvida

Mensagempor Knoner » Dom Set 29, 2013 19:49

Olá, estou em duvida na seguinte questão:

Sejam A, B, e Mn (R) e a £ R, mostre que:

a)(A^t)^t = A
b)(\alphaA)^t = \alphaA^t, onde \alpha ? K
c)Se n=m, (A.B)^t = B^T . A^T
Knoner
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qui Set 26, 2013 20:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Fisica
Andamento: cursando

Re: [Matrizes] Duvida

Mensagempor e8group » Seg Set 30, 2013 21:52

Item a ) Utilizando a notação [A]_{ij} = a_{ij} para designar o termo geral da matriz e lembrando da definição de transposição de matrizes : [A^t]_{ij} = [A]_{ji} = a_{ji} (**) , temos que
[(A^t)^t]_{ij} =  [A^t]_{ji} = [A]_{ij} = a_{ij} para todo i = 1 , \hdots , m ,  j = 1 , \hdots , n o que mostra A =(A^t)^t . No item b , utilize a definição (**) + propriedades dos números reais ,se não conseguir post . No item c , basta intercambiar a definição (**) juntamente com a definição produto de matrizes . Veja minha sugestão ,

[(AB)^t]_{ij} = [AB]_{ji} = \sum_{k=1}^n a_{jk} \cdot  b_{ki} . Sendo o produto a_{jk} \cdot  b_{ki} comutativo (pois ,a_{jk} ,  b_{ki}são números reais) e utilizando resultado do item (a) , a_{jk} = [A^t]_{kj} , b_{kj} = [B^t]_{jk} . Seguindo estas dicas conseguirá concluir o exercício .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)