por Ana Maria da Silva » Sáb Set 28, 2013 14:22
A areia que vaza de um depósito forma uma pilha cônica cuja altura é sempre igual ao dobro do raio da sua base. Se a altura da pilha aumenta a uma taxa de 10cm/min, então qual é a taxa com que a areia está escoando quando a altura da pilha for 15cm? Obs: Dê o resultado, a menos do \pi, até a primeira casa decimal.
Preciso ver o desenvolvimento!
-
Ana Maria da Silva
- Usuário Parceiro

-
- Mensagens: 83
- Registrado em: Qua Mar 27, 2013 15:09
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: licenciatura em matemática
- Andamento: cursando
por Russman » Sáb Set 28, 2013 16:33
Calcule o volume da pilha em função da sua altura. Derive e encontre a relação entre a taxa de escoamento e a da variação da altura.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por Ana Maria da Silva » Sáb Set 28, 2013 17:21
Não consegui desenvolver! se possível queria ver o desenvolvimento.Agradeço...
-
Ana Maria da Silva
- Usuário Parceiro

-
- Mensagens: 83
- Registrado em: Qua Mar 27, 2013 15:09
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: licenciatura em matemática
- Andamento: cursando
por Man Utd » Sáb Set 28, 2013 20:13
Ana Maria da Silva escreveu:A areia que vaza de um depósito forma uma pilha cônica cuja altura é sempre igual ao dobro do raio da sua base. Se a altura da pilha aumenta a uma taxa de 10cm/min, então qual é a taxa com que a areia está escoando quando a altura da pilha for 15cm? Obs: Dê o resultado, a menos do \pi, até a primeira casa decimal.
Preciso ver o desenvolvimento!
o volume de um cone é dado por:

, o enunciado disse que

, então

agora bastar fazer:

repare que

ficando com:

tente terminar lembrando que

-
Man Utd
- Colaborador Voluntário

-
- Mensagens: 155
- Registrado em: Qua Abr 03, 2013 09:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da Computação
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Helicóptero e uma cônica
por kesinhazzz » Seg Dez 14, 2009 16:21
- 1 Respostas
- 1437 Exibições
- Última mensagem por Elcioschin

Ter Dez 15, 2009 13:31
Geometria Analítica
-
- identificação de uma cônica
por Danilo » Qua Jan 16, 2013 10:16
- 1 Respostas
- 1776 Exibições
- Última mensagem por young_jedi

Qua Jan 16, 2013 16:21
Geometria Analítica
-
- Barraca cônica
por Luiz 2017 » Sex Set 22, 2017 20:40
- 0 Respostas
- 1107 Exibições
- Última mensagem por Luiz 2017

Sex Set 22, 2017 20:40
Cálculo: Limites, Derivadas e Integrais
-
- [hipérbole / cônica] Funções
por Cleyson007 » Sáb Set 06, 2008 01:32
- 1 Respostas
- 2601 Exibições
- Última mensagem por admin

Ter Set 09, 2008 15:35
Funções
-
- [conica] achar a equação da parábola
por Ge_dutra » Sáb Mar 16, 2013 21:47
- 4 Respostas
- 3132 Exibições
- Última mensagem por Ge_dutra

Qua Abr 03, 2013 00:06
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 11 visitantes
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.