por Ana Maria da Silva » Sáb Set 28, 2013 14:22
A areia que vaza de um depósito forma uma pilha cônica cuja altura é sempre igual ao dobro do raio da sua base. Se a altura da pilha aumenta a uma taxa de 10cm/min, então qual é a taxa com que a areia está escoando quando a altura da pilha for 15cm? Obs: Dê o resultado, a menos do \pi, até a primeira casa decimal.
Preciso ver o desenvolvimento!
-
Ana Maria da Silva
- Usuário Parceiro

-
- Mensagens: 83
- Registrado em: Qua Mar 27, 2013 15:09
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: licenciatura em matemática
- Andamento: cursando
por Russman » Sáb Set 28, 2013 16:33
Calcule o volume da pilha em função da sua altura. Derive e encontre a relação entre a taxa de escoamento e a da variação da altura.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por Ana Maria da Silva » Sáb Set 28, 2013 17:21
Não consegui desenvolver! se possível queria ver o desenvolvimento.Agradeço...
-
Ana Maria da Silva
- Usuário Parceiro

-
- Mensagens: 83
- Registrado em: Qua Mar 27, 2013 15:09
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: licenciatura em matemática
- Andamento: cursando
por Man Utd » Sáb Set 28, 2013 20:13
Ana Maria da Silva escreveu:A areia que vaza de um depósito forma uma pilha cônica cuja altura é sempre igual ao dobro do raio da sua base. Se a altura da pilha aumenta a uma taxa de 10cm/min, então qual é a taxa com que a areia está escoando quando a altura da pilha for 15cm? Obs: Dê o resultado, a menos do \pi, até a primeira casa decimal.
Preciso ver o desenvolvimento!
o volume de um cone é dado por:

, o enunciado disse que

, então

agora bastar fazer:

repare que

ficando com:

tente terminar lembrando que

-
Man Utd
- Colaborador Voluntário

-
- Mensagens: 155
- Registrado em: Qua Abr 03, 2013 09:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da Computação
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Helicóptero e uma cônica
por kesinhazzz » Seg Dez 14, 2009 16:21
- 1 Respostas
- 1423 Exibições
- Última mensagem por Elcioschin

Ter Dez 15, 2009 13:31
Geometria Analítica
-
- identificação de uma cônica
por Danilo » Qua Jan 16, 2013 10:16
- 1 Respostas
- 1760 Exibições
- Última mensagem por young_jedi

Qua Jan 16, 2013 16:21
Geometria Analítica
-
- Barraca cônica
por Luiz 2017 » Sex Set 22, 2017 20:40
- 0 Respostas
- 1097 Exibições
- Última mensagem por Luiz 2017

Sex Set 22, 2017 20:40
Cálculo: Limites, Derivadas e Integrais
-
- [hipérbole / cônica] Funções
por Cleyson007 » Sáb Set 06, 2008 01:32
- 1 Respostas
- 2589 Exibições
- Última mensagem por admin

Ter Set 09, 2008 15:35
Funções
-
- [conica] achar a equação da parábola
por Ge_dutra » Sáb Mar 16, 2013 21:47
- 4 Respostas
- 3108 Exibições
- Última mensagem por Ge_dutra

Qua Abr 03, 2013 00:06
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.