• Anúncio Global
    Respostas
    Exibições
    Última mensagem

forma uma pilha cônica

forma uma pilha cônica

Mensagempor Ana Maria da Silva » Sáb Set 28, 2013 14:22

A areia que vaza de um depósito forma uma pilha cônica cuja altura é sempre igual ao dobro do raio da sua base. Se a altura da pilha aumenta a uma taxa de 10cm/min, então qual é a taxa com que a areia está escoando quando a altura da pilha for 15cm? Obs: Dê o resultado, a menos do \pi, até a primeira casa decimal.

Preciso ver o desenvolvimento!
Ana Maria da Silva
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 83
Registrado em: Qua Mar 27, 2013 15:09
Formação Escolar: ENSINO MÉDIO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: forma uma pilha cônica

Mensagempor Russman » Sáb Set 28, 2013 16:33

Calcule o volume da pilha em função da sua altura. Derive e encontre a relação entre a taxa de escoamento e a da variação da altura.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: forma uma pilha cônica

Mensagempor Ana Maria da Silva » Sáb Set 28, 2013 17:21

Não consegui desenvolver! se possível queria ver o desenvolvimento.Agradeço...
Ana Maria da Silva
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 83
Registrado em: Qua Mar 27, 2013 15:09
Formação Escolar: ENSINO MÉDIO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: forma uma pilha cônica

Mensagempor Man Utd » Sáb Set 28, 2013 20:13

Ana Maria da Silva escreveu:A areia que vaza de um depósito forma uma pilha cônica cuja altura é sempre igual ao dobro do raio da sua base. Se a altura da pilha aumenta a uma taxa de 10cm/min, então qual é a taxa com que a areia está escoando quando a altura da pilha for 15cm? Obs: Dê o resultado, a menos do \pi, até a primeira casa decimal.

Preciso ver o desenvolvimento!


o volume de um cone é dado por: V=\frac{\pi*r^{2}*h}{3} , o enunciado disse que h=2r\Leftrightarrow r=\frac{h}{2} , então V(h)=\frac{3\pi*h^{3}}{4}

agora bastar fazer:

\\\\ \frac{d(V(h))}{dt}=\frac{d(V(h))}{dh}*\frac{dh}{dt} \\\\


repare que \\\\ \frac{dh}{dt}=  10cm/min ficando com:


\frac{d(V(h))}{dt}=\frac{d(V(h))}{dh}*10


tente terminar lembrando que h=15
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59