• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite] Limites notáveis resolução de questão

[Limite] Limites notáveis resolução de questão

Mensagempor Nicolas1Lane » Qui Set 26, 2013 07:56

Dada a seguinte proposição $\lim_{x\rightarrow\ 0} \frac{tgax}{x}$ queria saber se minha resolução apresentada abaixo matematicamente descrita é aceitável ou ainda se poderia ser melhorada ou mesmo no caso da existência, me digam dicas para melhorar ainda mais neste aprendizado...
Estou sendo meio redundante, mas isso se deve a enfatização de minha professora de querer que todas as propriedades e etapas de resoluções usadas nos cálculos sejam explicitadas até que se chegue ao produto final.

Assim: $\lim_{x\rightarrow\ 0} \frac{tgax}{x}$

=$\lim_{x\rightarrow\ 0} \frac{seax}{ \frac{cosax}{x}}$

=$\lim_{x\rightarrow\ 0} \frac{1 . ax}{cosax . ax} . \lim_{x\rightarrow\ 0} \frac{\frac{sem ax . ax}{ax}}{{x}}$

=$1 . a \lim_{x\rightarrow\ 0} \frac{senx}{x}$

=$a . 1$
=$ a $
Nicolas1Lane
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qua Set 11, 2013 23:25
Formação Escolar: ENSINO FUNDAMENTAL I
Área/Curso: Exatas/Ciência da Computação
Andamento: cursando

Re: [Limite] Limites notáveis resolução de questão

Mensagempor young_jedi » Qui Set 26, 2013 14:08

podemos escrever da seguinte forma

\lim_{x\to0}\frac{tg(ax)}{x}

\lim_{x\to0}\frac{sen(ax)}{cos(ax)}\frac{1}{x}

\lim_{x\to0}\frac{sen(ax)}{cos(ax)}\frac{a}{ax}

\lim_{x\to0}\frac{sen(ax)}{ax}.\frac{a}{cos(ax)}

\lim_{x\to0}\frac{sen(ax)}{ax}.\lim_{x\to0}\frac{a}{cos(ax)}=1.a
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}