por lucasbyno » Sex Set 13, 2013 01:49
Não sei escrever fórmula no latex então vai assim mesmo:
limite quando x tende a 0 de
raíz quádrupla de (x^4 + 1) -(menos)
raiz quadrada de (x^2 +1) e tudo isso dividido por
x^2.
Eu nunca consigo resolver limites quando há raiz, alguém poderia me dar uma dica, um macete (além da resolução desse exemplo acima)? Também seria bom se me dissessem um macete ou uma "forma correta de raciocinar" quando há limites com raiz quadrada ou cúbica no denominador. São as minhas maiores dificuldades.

-
lucasbyno
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qua Set 11, 2013 00:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Economia
- Andamento: cursando
por Man Utd » Dom Set 15, 2013 00:41
lucasbyno escreveu:Não sei escrever fórmula no latex então vai assim mesmo:
limite quando x tende a 0 de
raíz quádrupla de (x^4 + 1) -(menos)
raiz quadrada de (x^2 +1) e tudo isso dividido por
x^2.
Eu nunca consigo resolver limites quando há raiz, alguém poderia me dar uma dica, um macete (além da resolução desse exemplo acima)? Também seria bom se me dissessem um macete ou uma "forma correta de raciocinar" quando há limites com raiz quadrada ou cúbica no denominador. São as minhas maiores dificuldades.

olá. Por favor utilize nas futuras postagens o Latex para facilitar na compreensão.
![\\\\\\ \lim_{x\rightarrow0} \frac{\sqrt[4]{x^{4}+1}-\sqrt{x^{2}+1}}{x^{2}} \\\\\\ \lim_{x\rightarrow0} \frac{(\sqrt[4]{x^{4}+1}-\sqrt{x^{2}+1})*(\sqrt[4]{x^{4}+1}+\sqrt{x^{2}+1})}{x^{2}*(\sqrt[4]{x^{4}+1}+\sqrt{x^{2}+1})} \\\\\\ \lim_{x\rightarrow0} \frac{\sqrt{x^{4}+1}-(x^{2}+1)}{x^{2}*(\sqrt[4]{x^{4}+1}+\sqrt{x^{2}+1})} \\\\\\ \lim_{x\rightarrow0} \frac{(\sqrt{x^{4}+1}-(x^{2}+1))*(\sqrt{x^{4}+1}+(x^{2}+1))}{x^{2}*(\sqrt[4]{x^{4}+1}+\sqrt{x^{2}+1})*(\sqrt{x^{4}+1}+(x^{2}+1))} \\\\\\ \lim_{x\rightarrow0} \frac{x^{4}+1-(x^{2}+1)^{2}}{x^{2}*(\sqrt[4]{x^{4}+1}+\sqrt{x^{2}+1})*(\sqrt{x^{4}+1}+(x^{2}+1))} \\\\\\ \lim_{x\rightarrow0} \frac{\sqrt[4]{x^{4}+1}-\sqrt{x^{2}+1}}{x^{2}} \\\\\\ \lim_{x\rightarrow0} \frac{(\sqrt[4]{x^{4}+1}-\sqrt{x^{2}+1})*(\sqrt[4]{x^{4}+1}+\sqrt{x^{2}+1})}{x^{2}*(\sqrt[4]{x^{4}+1}+\sqrt{x^{2}+1})} \\\\\\ \lim_{x\rightarrow0} \frac{\sqrt{x^{4}+1}-(x^{2}+1)}{x^{2}*(\sqrt[4]{x^{4}+1}+\sqrt{x^{2}+1})} \\\\\\ \lim_{x\rightarrow0} \frac{(\sqrt{x^{4}+1}-(x^{2}+1))*(\sqrt{x^{4}+1}+(x^{2}+1))}{x^{2}*(\sqrt[4]{x^{4}+1}+\sqrt{x^{2}+1})*(\sqrt{x^{4}+1}+(x^{2}+1))} \\\\\\ \lim_{x\rightarrow0} \frac{x^{4}+1-(x^{2}+1)^{2}}{x^{2}*(\sqrt[4]{x^{4}+1}+\sqrt{x^{2}+1})*(\sqrt{x^{4}+1}+(x^{2}+1))}](/latexrender/pictures/5ea96d5f10c2ba50b1e6a2e7d7998df1.png)
dá pra terminar?
Sobre a dica,algumas vezes uma substituição de variáveis resolve e outras tbm pode ser resolvido pela identidade

att

-
Man Utd
- Colaborador Voluntário

-
- Mensagens: 155
- Registrado em: Qua Abr 03, 2013 09:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da Computação
- Andamento: cursando
por lucasbyno » Dom Set 15, 2013 14:15
Man Utd escreveu:Sobre a dica,algumas vezes uma substituição de variáveis resolve e outras tbm pode ser resolvido pela identidade

att

Ajudou muito!
Mas eu não entendi muito essa última parte... Substituição de variáveis? E o que tem o binômio de Newton a ver com isso?
-
lucasbyno
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qua Set 11, 2013 00:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Economia
- Andamento: cursando
por Man Utd » Dom Set 15, 2013 16:13
lucasbyno escreveu:Man Utd escreveu:Sobre a dica,algumas vezes uma substituição de variáveis resolve e outras tbm pode ser resolvido pela identidade

att

Ajudou muito!
Mas eu não entendi muito essa última parte... Substituição de variáveis? E o que tem o binômio de Newton a ver com isso?
Bem vc já viu limites de funções compostas correto? quando eu disse substituição de variáveis me referir a isso.Sobre esta identidade é muito útil,fica difícil de explicar aqui,o melhor seria se houvesse um exemplo,tenho certeza que ainda irá se deparar com alguns desse limites.
att.

-
Man Utd
- Colaborador Voluntário

-
- Mensagens: 155
- Registrado em: Qua Abr 03, 2013 09:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da Computação
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limites] Dúvida sobre limites laterais
por Subnik » Sáb Abr 04, 2015 18:24
- 1 Respostas
- 2652 Exibições
- Última mensagem por DanielFerreira

Dom Abr 12, 2015 16:10
Cálculo: Limites, Derivadas e Integrais
-
- [Limites] - Dúvida sobre o resultado de um limite
por Paulo Souza » Dom Ago 25, 2013 20:57
- 0 Respostas
- 1571 Exibições
- Última mensagem por Paulo Souza

Dom Ago 25, 2013 20:57
Cálculo: Limites, Derivadas e Integrais
-
- Sobre Limites
por thiagosaadoficial » Seg Fev 29, 2016 17:08
- 0 Respostas
- 1473 Exibições
- Última mensagem por thiagosaadoficial

Seg Fev 29, 2016 17:08
Cálculo: Limites, Derivadas e Integrais
-
- Ajuda sobre limites
por MJC » Ter Mai 06, 2008 12:41
- 8 Respostas
- 18319 Exibições
- Última mensagem por admin

Qua Mai 07, 2008 00:58
Cálculo: Limites, Derivadas e Integrais
-
- Questão sobre limites
por Paulod22 » Seg Mar 07, 2011 01:18
- 6 Respostas
- 4064 Exibições
- Última mensagem por Paulod22

Ter Mar 08, 2011 10:55
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.