• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função do 1º Grau

Função do 1º Grau

Mensagempor felipemreis » Sex Set 13, 2013 13:29

Estou com dúvida na seguinte questão:
:arrow: Mostre que f é função de 1 grau:

a)f(x)= (x-6)^2-(x-3)*(x-6)

b)f(x)= 2x^3+2x/3x^2+3

EU TENTEI RESOLVER OS POLINÔMIOS DE CADA FUNÇÃO, MAS EU NÃO CONSEGUI CHEGAR A UMA RESPOSTA COERENTE!
NÃO SEI COMO RESOLVER, POR FAVOR ME AJUDEM!

IMG001.jpg
Essa é a imagem da questão que eu escanei do livro, mostra a questão.
felipemreis
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sex Set 13, 2013 13:09
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Função do 1º Grau

Mensagempor temujin » Sex Set 13, 2013 15:22

Olá.

Procure colocar sempre uma questão por tópico. Aumenta as chances de que alguém responda sua dúvida. Vamos lá:

a)f(x)=(x-6)^2-(x-3)(x-12)

Desenvolva os polinômios:

f(x) = [x^2-12x+36]-[x^2-15x+72] = 3x-36

Onde a segunda parte é obtida apenas aplicando a distributiva.


b) f(x) = \frac{2(x^3+2x)}{3(x^2+3)}

Aqui vc pode começar pensando em fatorar os polinômios. Veja que tanto no numerador quanto no denominador vc tem alguma coisa em comum entre os termos. No numerador 2x aparece em cada um dos termos e no caso do denominador 3 aparece em cada um dos termos, então comece por aí.

f(x) = \frac{2x\cancel{(x+1)}}{3\cancel{(x+1)}}=\frac{2x}{3}
temujin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Qui Mar 14, 2013 15:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: formado

Re: Função do 1º Grau

Mensagempor Russman » Sex Set 13, 2013 17:40

Na letra b) suponha que f(x) = ax+b. Assim,

\frac{2x^3+2x}{3x^2+3} = ax+b

donde

2x^3 + 2x = (ax+b)(3x^2+3)
2x^3 + 2x = 3ax^3 + 3ax + 3bx^2 + 3b

Daí, por igualdade de polinômios, temos

3a = 2
3b=0

Logo, a = \frac{2}{3} e b=0. De fato, a função é de 1° grau e f(x) = \frac{2}{3}x.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Função do 1º Grau

Mensagempor felipemreis » Sex Set 13, 2013 19:56

Obrigado! temujin. Esclareceu as minhas dúvidas. Mas segundo o livro a resposta correta da letra a é: f(x)=3x. Foi diferente da sua resposta!
felipemreis
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sex Set 13, 2013 13:09
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Função do 1º Grau

Mensagempor temujin » Sex Set 13, 2013 19:59

felipemreis escreveu:Obrigado! temujin. Esclareceu as minhas dúvidas. Mas segundo o livro a resposta correta da letra a é: f(x)=3x. Foi diferente da sua resposta!


Claro, engano meu. Veja que o produto do segundo termo é 3.12 = 36

:$
temujin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Qui Mar 14, 2013 15:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: formado

Re: Função do 1º Grau

Mensagempor felipemreis » Sex Set 13, 2013 23:05

Como assim tmujin o produto do segundo termo vai ser igual a 3.12=36? Se você puder, mostra como é que se chega ao resultado da letra A.

:?: :?: :?:
felipemreis
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sex Set 13, 2013 13:09
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Função do 1º Grau

Mensagempor temujin » Sex Set 13, 2013 23:19

É o segundo termo que eu errei na hora de aplicar a distributiva. Vamos do começo:

(x-6)^2 = [x^2-12x+36]

(x-3)(x-12)=[x^2-15x+36]

Portanto,

f(x) = [x^2-12x+36]-[x^2-15x+36] = 3x
temujin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Qui Mar 14, 2013 15:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: formado

Re: Função do 1º Grau

Mensagempor felipemreis » Sáb Set 14, 2013 01:13

Muito obrigado temujin e Russman, vocês me ajudaram bastante. Para resolver essa questão tem que saber resolver os polinômios, e era isso que eu tava errando.

:y: :y: :y:
felipemreis
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sex Set 13, 2013 13:09
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D