por renatoneumann » Qui Ago 29, 2013 16:58
SE LOG(3)7=a e LOG(5)3=b então LOG(5)7 é igual a :entre parenteses é a base do logaritmo , não consigo chegar na resposta a.b , mesmo usando a propriedade de mudança de base , como se resolve essa questão??vai ser uma grande ajuda
-
renatoneumann
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qui Ago 29, 2013 00:01
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: ciencias da computação
- Andamento: cursando
por e8group » Qui Ago 29, 2013 18:46
Note que por definição ,
[;log_3(7) =a \iff 7 = 3^a ;]
e
[;log_5(3) = b \iff 3 = 5^b;]
Portanto , [;7 = (5^b)^a = 5^{a b};] .Por outro lado , novamente por definição [;log_5(7) = d \iff 7 = 5^{d};] , então [;d = a\cdot b;]
Observação : Para visualizar cada expressão entre [; ;] copie a mesma e cole neste site
http://www.codecogs.com/latex/eqneditor.php?lang=pt-br
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Logaritmos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Mudança de Base] Matriz de mudança de base ? para ?.
por fabriel » Ter Nov 26, 2013 15:38
- 0 Respostas
- 2021 Exibições
- Última mensagem por fabriel

Ter Nov 26, 2013 15:38
Álgebra Linear
-
- Mudança de Base
por Bruhh » Sáb Nov 20, 2010 17:30
- 0 Respostas
- 1292 Exibições
- Última mensagem por Bruhh

Sáb Nov 20, 2010 17:30
Geometria Analítica
-
- [Mudança de Base]
por ewald » Sex Abr 13, 2012 00:20
- 0 Respostas
- 1348 Exibições
- Última mensagem por ewald

Sex Abr 13, 2012 00:20
Introdução à Álgebra Linear
-
- Mudança de base
por Thalis » Qui Jul 24, 2014 01:34
- 1 Respostas
- 2395 Exibições
- Última mensagem por Pessoa Estranha

Qui Jul 24, 2014 23:31
Álgebra Linear
-
- logaritmos - mudança de base
por Raquel » Seg Mar 29, 2010 20:02
- 2 Respostas
- 7167 Exibições
- Última mensagem por rodrigorfg

Sáb Abr 10, 2010 01:26
Logaritmos
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.