por manoelcarlos » Sex Ago 23, 2013 01:21
Pessoal, boa noite;
Este é o meu terceiro tópico, cada um com uma dúvida diferente, pois me matriculei em engenharia e preciso relembrar todo o ensino médio: acreditem, estou estudando MUITO pra recuperar esse tempo. Peguei uma equação para tentar resolver, mas não consigo nem dar o primeiro passo desta vez por causa de um x² no denominador. Se alguém puder me ajudar com isso, terá minha eterna gratidão!rs
A equação é

E agora, por onde começar?
-
manoelcarlos
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Qua Ago 21, 2013 18:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
por Luis Gustavo » Sex Ago 23, 2013 13:58
-
Luis Gustavo
- Usuário Dedicado

-
- Mensagens: 31
- Registrado em: Seg Mai 06, 2013 15:31
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por manoelcarlos » Seg Ago 26, 2013 01:02
Muito obrigado pela resposta, Luis. Como assim "se x for 1, teremos duas divisões por zero"? Não entendi essa parte.
abraço
-
manoelcarlos
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Qua Ago 21, 2013 18:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
por Russman » Seg Ago 26, 2013 02:46
Esta equação é uma equação que degenera para

e

. Veja que se

a primeira parcela, que é

fica

que não faz sentido. Ainda se

a última parcela também degenera, pois

que também não faz sentido assim como pra

pois para este

que não faz sentido novamente. Logo, a equação pode admitir valores de

que sejam diferentes de

e

.

.
Para resolver a equação você deve tentar igualar todos os denominadores. O mínimo múltiplo comum entre eles é uma boa, mas eu prefiro somar as parcelas como fazemos para frações.

Logo, a equação fica


Note que

, de modo que os numeradores das frações de cada lado devem ser iguais pois os denominadores já o são. Assim,






A solução

é da equação

que foi obtida simplificando

. Mas como para a eq. original excluímos

do conjunto Universo( que são os valores aceitáveis de

) o conjunto Solução da eq. original é vazio. Isto é, não existe valor de

que a satisfaça.



"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por Luis Gustavo » Seg Ago 26, 2013 15:04
manoelcarlos escreveu:Muito obrigado pela resposta, Luis. Como assim "se x for 1, teremos duas divisões por zero"? Não entendi essa parte.
abraço
É o que o amigo aí em cima disse: Se

, então a equação fica

Viu? Temos duas divisões por zero, o que implica que

não é uma solução válida.
-
Luis Gustavo
- Usuário Dedicado

-
- Mensagens: 31
- Registrado em: Seg Mai 06, 2013 15:31
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por manoelcarlos » Seg Ago 26, 2013 15:07
Russman e Luis Guistavo, muito obrigado pela ajuda. Ainda não absorvi todas as informações, mas vou passar a tarde estudando esse problema. Muito obrigado mesmo!!!!
-
manoelcarlos
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Qua Ago 21, 2013 18:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
Voltar para Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Equação com Radiciação no denominador
por victorym1 » Ter Mar 24, 2015 21:33
- 0 Respostas
- 1159 Exibições
- Última mensagem por victorym1

Ter Mar 24, 2015 21:33
Equações
-
- (Potencia) equação com potencia
por Thiago1986Iz » Dom Jul 24, 2016 12:53
- 1 Respostas
- 1773 Exibições
- Última mensagem por DanielFerreira

Dom Jul 24, 2016 16:00
Equações
-
- [potência] equação
por Ederson_ederson » Qui Jun 25, 2015 08:49
- 1 Respostas
- 1790 Exibições
- Última mensagem por DanielFerreira

Sáb Jun 27, 2015 14:42
Álgebra Elementar
-
- equação com somatório de potência
por dummyman » Sáb Jan 04, 2014 12:28
- 2 Respostas
- 2559 Exibições
- Última mensagem por Russman

Seg Jan 06, 2014 01:24
Álgebra Elementar
-
- [Série de potÊncia] Expansão de séries de potência
por Adonias 7 » Qua Jun 01, 2016 09:05
- 0 Respostas
- 3360 Exibições
- Última mensagem por Adonias 7

Qua Jun 01, 2016 09:05
Sequências
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.