por lfccruz » Qua Ago 21, 2013 06:10
Olá,
Não sou estudante de matemática, mas preciso de ajuda para a seguinte situação (exemplo):
Tenho um vetor de tamanho n (estrutura de dados), preenchido com valores 1:
Exemplo: n=12
|1|1|1|1|1|1|1|1|1|1|1|1|
Posso ter sequências de zeros de tamanho m.
Exemplo: m=1
|1|0|1|0|1|0|1|0|1|1|1|1|
Exemplo: m=2
|1|0|0|1|1|0|0|1|0|0|1|1|
Exemplo: m=3
|1|0|0|0|1|1|1|0|0|0|1|1|
Quantas combinações existem para um vetor de n posições e sequências de zero de até tamanho m?
Exemplo: Para n=12 e m=3.
nenhuma sequência de zeros
|1|1|1|1|1|1|1|1|1|1|1|1|
combinações de x sequências de 1 zeros
|0|1|1|1|1|1|1|1|1|1|1|1|
|1|0|1|1|1|1|0|1|1|1|1|1|
combinações de x sequências de 2 zeros
|0|0|1|1|1|1|1|1|1|1|1|1|
|1|0|0|1|1|1|1|0|0|1|1|1|
combinações de x sequências de 3 zeros
|0|0|0|1|0|0|0|1|1|1|1|1|
|1|0|0|0|1|1|0|0|0|1|1|1|
combinações de sequências de zeros de tamanhos diferentes
|0|1|0|1|0|0|0|1|0|0|1|1|
|1|0|0|0|1|1|0|1|0|1|0|0|
Eu preciso da fórmula matemática (formal) e de uma maneira de obter uma a uma as possíveis combinações!!!
Não sei se criei o tópico no lugar correto.
Desculpem meu inglês terrível, pois falo português (Brasil).
Obrigado!
Luiz Fernando
-
lfccruz
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qua Ago 21, 2013 06:09
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Computação
- Andamento: cursando
Voltar para Análise Combinatória
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Análise Combinatória] Combinações para navegar em um grafo
por lfccruz » Qua Set 04, 2013 03:00
- 0 Respostas
- 1584 Exibições
- Última mensagem por lfccruz

Qua Set 04, 2013 03:00
Análise Combinatória
-
- para cada vetor V o simétrico -V é único
por dkiwilson » Sáb Set 23, 2017 19:16
- 0 Respostas
- 2476 Exibições
- Última mensagem por dkiwilson

Sáb Set 23, 2017 19:16
Álgebra Linear
-
- (( Analise combinatória ))
por Roberta » Dom Jul 13, 2008 17:28
- 8 Respostas
- 16080 Exibições
- Última mensagem por Aparecida

Sáb Mai 05, 2012 00:07
Estatística
-
- Análise Combinatória
por Rejane Sampaio » Sex Set 12, 2008 23:20
- 4 Respostas
- 12322 Exibições
- Última mensagem por Neilson

Ter Mai 01, 2012 01:23
Estatística
-
- Análise Combinatória
por Rejane Sampaio » Sex Set 12, 2008 23:26
- 2 Respostas
- 8316 Exibições
- Última mensagem por Rejane Sampaio

Seg Set 15, 2008 10:08
Estatística
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.