• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Área de triângulos quaisquer

Área de triângulos quaisquer

Mensagempor -Sarah- » Seg Ago 19, 2013 20:32

Determine a área do triângulo ABC e a medida do lado a. É um triângulo acutângulo, de lados b e c valendo, \sqrt[]{2} e \sqrt[]{3}, respectivamente. E o ângulo A vale 75º.
-Sarah-
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sáb Fev 23, 2013 18:20
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Área de triângulos quaisquer

Mensagempor young_jedi » Seg Ago 19, 2013 22:41

pela lei dos cossenos

a^2=(\sqrt2)^2+(\sqrt3)^2-2.\sqrt2.\sqrt3.cos(75^o)

a^2=(\sqrt2)^2+(\sqrt3)^2-2.\sqrt2.\sqrt3.cos(30^o+45^o)

a^2=(\sqrt2)^2+(\sqrt3)^2-2.\sqrt2.\sqrt3.(cos(30^o)cos(45^o)-sen(30^o)cos(45^o))

a^2=(\sqrt2)^2+(\sqrt3)^2-2.\sqrt2.\sqrt3.(\frac{\sqrt3}{2}.\frac{\sqrt2}{2}-\frac{1}{2}\frac{\sqrt2}{2})

tente concluir a partir daqui e qualquer duvida comente
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Área de triângulos quaisquer

Mensagempor -Sarah- » Ter Ago 20, 2013 21:05

{a}^{2}= 2+3 - 2 \sqrt[]{6}(\frac{\sqrt[]{6}}{4}-\frac{\sqrt[]{2}}{4})

{a}^{2}= 5 - \frac{2\sqrt[]{6}.\sqrt[]{6}}{4}+ \frac{2\sqrt[]{6}.\sqrt[]{2}}{4}

{a}^{2}= 5 - \frac{12}{4}+ \frac{2.2\sqrt[]{3}}{4}

a = \sqrt[]{5 - 3 +\sqrt[]{3}}

É assim? Achei o resultado estranho..
-Sarah-
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sáb Fev 23, 2013 18:20
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Área de triângulos quaisquer

Mensagempor young_jedi » Ter Ago 20, 2013 21:13

é isso ai mesmo

\sqrt{2+\sqrt3}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Área de triângulos quaisquer

Mensagempor -Sarah- » Ter Ago 20, 2013 21:14

Ah! Vlw
-Sarah-
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sáb Fev 23, 2013 18:20
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Área de triângulos quaisquer

Mensagempor -Sarah- » Ter Ago 20, 2013 21:21

E como eu calculo a área?
-Sarah-
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sáb Fev 23, 2013 18:20
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Área de triângulos quaisquer

Mensagempor young_jedi » Ter Ago 20, 2013 23:48

a área é dada por

A=\frac{\sqrt2.\sqrt3.sen(75^o)}{2}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.