• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Área de triângulos quaisquer

Área de triângulos quaisquer

Mensagempor -Sarah- » Seg Ago 19, 2013 20:32

Determine a área do triângulo ABC e a medida do lado a. É um triângulo acutângulo, de lados b e c valendo, \sqrt[]{2} e \sqrt[]{3}, respectivamente. E o ângulo A vale 75º.
-Sarah-
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sáb Fev 23, 2013 18:20
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Área de triângulos quaisquer

Mensagempor young_jedi » Seg Ago 19, 2013 22:41

pela lei dos cossenos

a^2=(\sqrt2)^2+(\sqrt3)^2-2.\sqrt2.\sqrt3.cos(75^o)

a^2=(\sqrt2)^2+(\sqrt3)^2-2.\sqrt2.\sqrt3.cos(30^o+45^o)

a^2=(\sqrt2)^2+(\sqrt3)^2-2.\sqrt2.\sqrt3.(cos(30^o)cos(45^o)-sen(30^o)cos(45^o))

a^2=(\sqrt2)^2+(\sqrt3)^2-2.\sqrt2.\sqrt3.(\frac{\sqrt3}{2}.\frac{\sqrt2}{2}-\frac{1}{2}\frac{\sqrt2}{2})

tente concluir a partir daqui e qualquer duvida comente
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Área de triângulos quaisquer

Mensagempor -Sarah- » Ter Ago 20, 2013 21:05

{a}^{2}= 2+3 - 2 \sqrt[]{6}(\frac{\sqrt[]{6}}{4}-\frac{\sqrt[]{2}}{4})

{a}^{2}= 5 - \frac{2\sqrt[]{6}.\sqrt[]{6}}{4}+ \frac{2\sqrt[]{6}.\sqrt[]{2}}{4}

{a}^{2}= 5 - \frac{12}{4}+ \frac{2.2\sqrt[]{3}}{4}

a = \sqrt[]{5 - 3 +\sqrt[]{3}}

É assim? Achei o resultado estranho..
-Sarah-
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sáb Fev 23, 2013 18:20
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Área de triângulos quaisquer

Mensagempor young_jedi » Ter Ago 20, 2013 21:13

é isso ai mesmo

\sqrt{2+\sqrt3}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Área de triângulos quaisquer

Mensagempor -Sarah- » Ter Ago 20, 2013 21:14

Ah! Vlw
-Sarah-
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sáb Fev 23, 2013 18:20
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Área de triângulos quaisquer

Mensagempor -Sarah- » Ter Ago 20, 2013 21:21

E como eu calculo a área?
-Sarah-
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sáb Fev 23, 2013 18:20
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Área de triângulos quaisquer

Mensagempor young_jedi » Ter Ago 20, 2013 23:48

a área é dada por

A=\frac{\sqrt2.\sqrt3.sen(75^o)}{2}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: