• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Soma de vetores - Trigonometria.

Soma de vetores - Trigonometria.

Mensagempor Sobreira » Sáb Ago 03, 2013 15:38

Tenho o desenho abaixo para tentar exemplificar o problema.
O detalhe é o seguinte:
Para determinar o módulo do vetor resultante, através da regra do polígono, eu aplico diretamente a lei dos cossenos:

Fr=\sqrt[]{{F1}^{2}+{F2}^{2}-2 F1 F2 cos 110}

Fr=\sqrt[]{{F1}^{2}+{F2}^{2}-2 F1 F2 (-0,342020)}

Até aí tudo bem.Mas se eu quero, por exemplo, realizar o exercício pela regra do paralelogramo, no cálculo eu ficarei com cosseno de 70º que é o mesmo de 110º mas negativo.O cosseno de 110º é -0,34 e o cosseno de 70º é 0,34.

Fr=\sqrt[]{{F1}^{2}+{F2}^{2}-2 F1 F2 (0,342020)}

Este sinal de negativo altera completamente o resultado do exercício.
Qual a solução ??
Anexos
Sem título.jpg
Sem título.jpg (9.82 KiB) Exibido 1064 vezes
"The good thing about science is that it's true whether or not you believe in it."
Sobreira
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Sex Out 12, 2012 17:33
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: formado

Re: Soma de vetores - Trigonometria.

Mensagempor mecfael » Dom Ago 18, 2013 22:52

Pela regra do paralelogramo na formula fica: a^2=b^2+c^2-2bccos(\pi- \theta ) \therefore a^2=b^2+c^2+2bccos(\theta) então ai não vai dar erro
mecfael
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Ago 17, 2013 23:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}