• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Substituição por integral

Substituição por integral

Mensagempor livia02 » Sáb Ago 17, 2013 19:29

Estava acompanhando uma explicação no livro da resolução de uma equação diferencial e não entendi um passo da resolução:

c.v(t) + \frac{dv(t)}{dt}= f (lembrando que c e f são números)

1º - Fazendo s(t) = {e}^{\int c dt} = {e}^{ct} e multiplicando os dois lados da equação temos:
c{e}^{ct}.v(t)+c{e}^{ct}.\frac{dv(t)}{dt}=f{e}^{ct}

2º - Depois ele substitui c{e}^{ct} = \frac{d}{dt}({e}^{ct}).

Não entendi esses dois passos. Da onde ele tirou s(t) = {e}^{\int c dt} = {e}^{ct}? Como ele chegou a esse valor para substituir? E no segundo passos, porque ele substituiu pela derivada?

Alguém pode me explicar o porque desses passos?
Obrigada!
livia02
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Ago 14, 2013 20:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia mecânica
Andamento: cursando

Re: Substituição por integral

Mensagempor MateusL » Sáb Ago 17, 2013 23:36

Acho que ele fez tudo isso para poder escrever o lado esquerdo da equação como a derivada de um produto de funções.
Então, ele criou uma função s(t)=e^{\int cdt}=e^{ct} para que \dfrac{d s(t)}{dt}=c\cdot s(t).

Então, multiplicando os dois lados por s(t)=e^{ct}:

c\cdot v(t)+\dfrac{dv(t)}{dt}=f
c\cdot s(t)\cdot v(t)+s(t)\cdot \dfrac{dv(t)}{dt}=f\cdot s(t)

Como \dfrac{d s(t)}{dt}=c\cdot s(t), podemos escrever que:

v(t)\cdot \dfrac{ds(t)}{dt}+s(t)\cdot \dfrac{dv(t)}{dt}=f\cdot s(t)

Pela derivada do produto, v(t)\cdot \dfrac{ds(t)}{dt}+s(t)\cdot \dfrac{dv(t)}{dt}=\dfrac{d(v(t)\cdot s(t))}{dt}, então:

\dfrac{d(v(t)\cdot s(t))}{dt}=f\cdot s(t)

Espero que seja isso.
Abraço!
MateusL
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Qua Jul 17, 2013 23:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 13 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}