• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Substituição por integral

Substituição por integral

Mensagempor livia02 » Sáb Ago 17, 2013 19:29

Estava acompanhando uma explicação no livro da resolução de uma equação diferencial e não entendi um passo da resolução:

c.v(t) + \frac{dv(t)}{dt}= f (lembrando que c e f são números)

1º - Fazendo s(t) = {e}^{\int c dt} = {e}^{ct} e multiplicando os dois lados da equação temos:
c{e}^{ct}.v(t)+c{e}^{ct}.\frac{dv(t)}{dt}=f{e}^{ct}

2º - Depois ele substitui c{e}^{ct} = \frac{d}{dt}({e}^{ct}).

Não entendi esses dois passos. Da onde ele tirou s(t) = {e}^{\int c dt} = {e}^{ct}? Como ele chegou a esse valor para substituir? E no segundo passos, porque ele substituiu pela derivada?

Alguém pode me explicar o porque desses passos?
Obrigada!
livia02
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Ago 14, 2013 20:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia mecânica
Andamento: cursando

Re: Substituição por integral

Mensagempor MateusL » Sáb Ago 17, 2013 23:36

Acho que ele fez tudo isso para poder escrever o lado esquerdo da equação como a derivada de um produto de funções.
Então, ele criou uma função s(t)=e^{\int cdt}=e^{ct} para que \dfrac{d s(t)}{dt}=c\cdot s(t).

Então, multiplicando os dois lados por s(t)=e^{ct}:

c\cdot v(t)+\dfrac{dv(t)}{dt}=f
c\cdot s(t)\cdot v(t)+s(t)\cdot \dfrac{dv(t)}{dt}=f\cdot s(t)

Como \dfrac{d s(t)}{dt}=c\cdot s(t), podemos escrever que:

v(t)\cdot \dfrac{ds(t)}{dt}+s(t)\cdot \dfrac{dv(t)}{dt}=f\cdot s(t)

Pela derivada do produto, v(t)\cdot \dfrac{ds(t)}{dt}+s(t)\cdot \dfrac{dv(t)}{dt}=\dfrac{d(v(t)\cdot s(t))}{dt}, então:

\dfrac{d(v(t)\cdot s(t))}{dt}=f\cdot s(t)

Espero que seja isso.
Abraço!
MateusL
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Qua Jul 17, 2013 23:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.