• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite - como resolver um lim quando temos raiz^2 e raiz^3.

Limite - como resolver um lim quando temos raiz^2 e raiz^3.

Mensagempor Monica santos » Sex Ago 16, 2013 14:22

[tex]\lim_{0}\sqrt[]{a^2+bt-a} (a>0)
t

Vamos lá o professor mandou calcular o limite, porém eu não entendir pelos exemplos que ele me passou e queria algo mais detalhado. Tem outros exemplos que necessito utilizar produtos notaveis, fatoração e mmc . Me ajude por favor .
Me explica isso melhor.
Monica santos
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Ago 16, 2013 13:46
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Quimica
Andamento: cursando

Re: Limite - como resolver um lim quando temos raiz^2 e raiz

Mensagempor young_jedi » Sex Ago 16, 2013 16:15

Não compreendi muito bem este limite seria assim

\lim_{a\to0}\sqrt[]{a^2+bt-a}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Limite - como resolver um lim quando temos raiz^2 e raiz

Mensagempor Monica santos » Sex Ago 16, 2013 16:31

È caso de limite inderteminada .
Monica santos
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Ago 16, 2013 13:46
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Quimica
Andamento: cursando

Re: Limite - como resolver um lim quando temos raiz^2 e raiz

Mensagempor Monica santos » Sex Ago 16, 2013 16:33

correto esse sim, porem é sobre (T) pois não foi junto com a equação
Monica santos
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Ago 16, 2013 13:46
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Quimica
Andamento: cursando

Re: Limite - como resolver um lim quando temos raiz^2 e raiz

Mensagempor young_jedi » Sex Ago 16, 2013 19:01

imagino então que seja isto

\lim_{t\to0}\frac{\sqrt{a^2+bt-a}}{t}

se o a for maior que 1 então temos que

a^2-a>0

portanto quando t tende a 0 ficamos com uma raiz de

\sqrt{a^2-a}>0

mais isto esta sobre t portanto quando t tende a zero isto tende a infinito

\lim_{t\to0}\frac{\sqrt{a^2+bt-a}}{t}=+\infty
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.