• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função do 2° grau

Função do 2° grau

Mensagempor Thiago 86 » Ter Ago 13, 2013 15:33

Determine K na função f(x)= x²-8x+K, de modo que a soma dos quadrados das raízes seja 40.

Bem, nessa questão eu sei que (x´+x´´)²=40, mais daí não consegui passar.
Thiago 86
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Seg Fev 11, 2013 18:55
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Curso técnico em enfermagem
Andamento: cursando

Re: Função do 2° grau

Mensagempor Russman » Ter Ago 13, 2013 16:21

Para uma equação ax^2 + bx + c = 0 é sabido que existem duas soluções. Estas podem ser reais( iguais ou diferentes) ou complexas( conjugadas) e são dadas por

x_1 = \frac{-b+\sqrt{\Delta}}{2a} e x_2 = \frac{-b-\sqrt{\Delta}}{2a}.

Note que

x_1^2 = \frac{b^2 -2b\sqrt{\Delta} + \Delta}{4a^2}

e

x_2^2 =\frac{b^2 +2b\sqrt{\Delta} + \Delta}{4a^2}

de modo que

x_1^2 + x_2^2 = \frac{2b^2 + 2 \Delta}{4a^2} = \frac{b^2}{a^2} - 2 \frac{c}{a}

pois \Delta = b^2 -4ac.

Comoa = 1, b = -8 e c=k, então

x_1^2 + x_2^2 =\frac{(-8)^2}{1^2} - 2 \frac{k}{1} = 64-2k .

Se x_1^2 + x_2^2 = 40, então 64-2k = 40 e k = 12.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Função do 2° grau

Mensagempor Thiago 86 » Sex Ago 16, 2013 00:55

Essa questão é do mal. Obrigado, vou tentar raciocinar a resposta.
Thiago 86
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Seg Fev 11, 2013 18:55
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Curso técnico em enfermagem
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.