• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Elipsoide

Elipsoide

Mensagempor Man Utd » Seg Jul 29, 2013 11:26

Encontre a equação do elipsoide de revolução que contém o ponto (4,0,0) e o círculo c: x² + z² = 9, y = 1.
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Elipsoide

Mensagempor young_jedi » Qua Jul 31, 2013 00:02

imagino que seja uma rotação entorno do eixo y, como ele deve conter a circunferência descrita então deve ser uma função do tipo

x^2+z^2+a.y^2=b

como ele deve conter a circunferência então temos que

x^2+z^2+a.1^2=b

x^2+z^2=b-a

9=a-b

mais como ela também deve conter o ponto (4,0,0)

4^2+0^2+a.0^2=b

16=b

com isso achamos que b=16 então é so encontra a utilizando a outra equação
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Elipsoide

Mensagempor Man Utd » Qua Jul 31, 2013 10:20

young_jedi escreveu:imagino que seja uma rotação entorno do eixo y, como ele deve conter a circunferência descrita então deve ser uma função do tipo

x^2+z^2+a.y^2=b


Mas o Elipsoide de Revolução não é dessa forma?
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{a^{2}}=1
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Elipsoide

Mensagempor young_jedi » Qua Jul 31, 2013 21:13

Sim pode ser escrito desta forma
Note que como você já tem um dos pontos e a equaç ão da circunferência é só determinar a e b
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Elipsoide

Mensagempor Man Utd » Qua Jul 31, 2013 21:41

young_jedi escreveu:Sim pode ser escrito desta forma
Note que como você já tem um dos pontos e a equaç ão da circunferência é só determinar a e b


mas desse jeito que eu coloquei, a resposta seria outra veja só:

\\\\ \frac{x^{2}}{a^{2}}+\frac{1^{2}}{b^{2}}+\frac{z^{2}}{a^{2}}=1 \\\\ x^{2}+z^{2}=a^{2}-\frac{a^{2}}{b^{2}}  \\\\ 9=a^{2}-\frac{a^{2}}{b^{2}}  (I)

agora calculando valor de a,usando ponto (4,0,0)

\\\\ \frac{4^{2}}{a^{2}}+\frac{0^{2}}{b^{2}}+\frac{0^{2}}{a^{2}}=1 \Leftrightarrow a=4

finalmente calculando o valor de "b" em (I):
\\\\ 9=a^{2}-\frac{a^{2}}{b^{2}} \\\\ 9=16-\frac{16}{b^{2}} \\\\ 9b^{2}=16b^{2}-16\Leftrightarrow b=\frac{4\sqrt{7}}{7}

aonde errei? :-O
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Elipsoide

Mensagempor young_jedi » Qua Jul 31, 2013 21:48

você não errou em lugar algum amigo, ao substituir esses valores de a e b que você encontrou na sua equação original, você vai encontrar a mesma equação que eu coloquei, para que elas fiquem idênticas é apenas questão de manipulação algébrica, se não entender da um toque que eu te ajudo a finalizar
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Elipsoide

Mensagempor Man Utd » Qui Ago 01, 2013 10:13

as respostas não seriam diferentes olha só:

seu modo, tomando a=25 e b=16 :

\\\\ x^{2}+z^{2}+25y^{2}=16 \\\\ \frac{x^{2}}{16}+\frac{z^{2}}{16}+\frac{y^{2}}{\frac{16}{25}}=1

meu modo tomando a=4*?7/7 e b=4:

\\\\ \frac{x^{2}}{16}+\frac{y^{2}}{\frac{16}{7}}+\frac{z^{2}}{16}}=1
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Elipsoide

Mensagempor young_jedi » Qui Ago 01, 2013 11:19

Tem um pequeno erro em minha resposta a equação na verdade e
9=b-a

Logo a=7

Assim as equações são iguais
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Elipsoide

Mensagempor Man Utd » Qui Ago 01, 2013 11:24

wlw,obrigado pela ajuda :) :) :)
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D