• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Retas] Pontos equidistantes

[Retas] Pontos equidistantes

Mensagempor luankaique » Qui Jul 25, 2013 22:34

Fala pessoal

Estou com dúvida em uma questão. A resposta é P(1,0,0), consegui até entender o raciocínio mas queria saber como fazer a questão "na tora", desenvolvendo tudo certinho.

Sejam:

A(1,1,1)
B(0,0,1)
r: X = (1,0,0) + t(1,1,1)

Determine os pontos de r equidistantes de A e B:
luankaique
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Jul 25, 2013 22:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Industrial Mecânica
Andamento: cursando

Re: [Retas] Pontos equidistantes

Mensagempor MateusL » Qui Jul 25, 2013 23:06

A distância de um ponto (x,y,z) até o ponto A é:

D_A(x,y,z)=\sqrt{(1-x)^2+(1-y)^2+(1-z)^2}

E até o ponto B:

D_B(x,y,z)=\sqrt{x^2+y^2+(1-z)^2}

Os pontos equidistantes de A e B são os pontos (x,y,z) que satisfazem:

D_A(x,y,z)=D_B(x,y,z)

\sqrt{(1-x)^2+(1-y)^2+(1-z)^2}=\sqrt{x^2+y^2+(1-z)^2}

Simplificando, chegamos a:

x+y-1=0

Além disso, temos que:

r:\ X=(1+t,t,t)

Então, para os pontos pertencentes a r, teremos x=1+t e y=t.

Temos, então, o seguinte sistema:

x+y=1
x=1+t
y=t

Resolvendo, encontramos t=0, portanto, o ponto procurado é (1,0,0).

Abraço!
MateusL
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Qua Jul 17, 2013 23:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Retas] Pontos equidistantes

Mensagempor luankaique » Sex Jul 26, 2013 14:11

Consegui entender a questão.

Muito obrigado!
luankaique
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Jul 25, 2013 22:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Industrial Mecânica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?