por mthc10 » Qua Jul 24, 2013 01:08
Olá amigos, Boas,
Bom estou com um problema... Estou estudando pelo livro Leithold e fazendo seus respectivos exercícios, porém há algumas questão que eu não consigo resolver, e nem o livro soluciona questões semelhantes para eu ter noção de como resolver, e por isso peço a ajuda de vocês!

A questão é a seguinte:
"Ache a área da região limitada pela reta

e pela curva

."
O livro apresenta uma sugestão para resolver tal problema, que seria o seguinte: "resolva a equação cúbica em y em termos de x e expresse y como duas funções de x.".
Bom, não consigo isolar X e Y dessa "função". Então não me ajudou muito tal sugestão.
O que eu (acho que)entendi é que para resolver esse problema, terei de achar os pontos onde essa curva intercepta a reta x = 4 e integrar essa curva sendo os limites de integração 0 e 4, visto que se x=0, y=0.
Alguém pode ajudar ? Obrigado desde já!
-
mthc10
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Ter Mai 21, 2013 23:46
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Bacharel em Engenharia Elétrica
- Andamento: cursando
por Russman » Qua Jul 24, 2013 01:36
A curva mencionada não esta na forma

. Portanto, você deve tentar colocá-la assim. Para isto, visto que a forma implícita é uma forma cúbica em

você deve tentar resolvê-la para

ou resolvê-la para

percebendo que ela é uma forma quadática para

. Na primeira, você obterá

e na segunda

.
Repare que

de modo que

e temos duas soluções possíveis para

.
O gráfico dessas funções é

- graph
- graph (3).gif (5.66 KiB) Exibido 2591 vezes
de modo que a área delimitada por elas é bem visível. Eu acho que você terá de calcular a área da curva de cima de

até

e descontar da área da curva de baixo no mesmo intervalo. Descontar sim, pq de

até

a curva de baixo tem área positiva e em diante tem area negativa via integral. Daí, como no primeiro intervalo voce deve subtrair da área total e no segundo somar, os sinais se equilibram e voce tem o resultado de imediato.
Editado pela última vez por
Russman em Qua Jul 24, 2013 02:33, em um total de 2 vezes.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por mthc10 » Qua Jul 24, 2013 01:55
Desculpe a ignorância, mas como eu faço isso ?
Essa é a minha dificuldade, já que não consigo isolar as incógnitas... Se não consigo isolar as incógnitas, como vou resolver a equação em y ou em x ?
-
mthc10
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Ter Mai 21, 2013 23:46
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Bacharel em Engenharia Elétrica
- Andamento: cursando
por mthc10 » Qua Jul 24, 2013 13:02
Amigo, obrigado, consegui resolver graças a você!
É sim como você disse, Integral da função de cima

- integral da função de baixo

.
Como resultado:

Obrigado pela ajuda!
-
mthc10
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Ter Mai 21, 2013 23:46
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Bacharel em Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Integral Definida] Ex. do tipo "onde está o erro?"
por Fabio Wanderley » Seg Out 22, 2012 23:15
- 2 Respostas
- 2701 Exibições
- Última mensagem por Fabio Wanderley

Ter Out 23, 2012 00:24
Cálculo: Limites, Derivadas e Integrais
-
- Ajuda para encontrar o "u" na integral
por vmouc » Sex Jun 10, 2011 15:25
- 3 Respostas
- 2270 Exibições
- Última mensagem por vmouc

Sáb Jun 11, 2011 21:05
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Integral funçao trigonometrica
por ewald » Qua Ago 17, 2011 22:33
- 2 Respostas
- 2698 Exibições
- Última mensagem por ewald

Qui Ago 18, 2011 00:54
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Integral funçao trigonometrica
por ewald » Sáb Ago 20, 2011 17:20
- 2 Respostas
- 2714 Exibições
- Última mensagem por LuizAquino

Dom Ago 21, 2011 21:14
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Integral funçao trigonometrica
por ewald » Seg Ago 22, 2011 00:44
- 1 Respostas
- 1334 Exibições
- Última mensagem por LuizAquino

Seg Ago 22, 2011 08:52
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.