Bom estou com um problema... Estou estudando pelo livro Leithold e fazendo seus respectivos exercícios, porém há algumas questão que eu não consigo resolver, e nem o livro soluciona questões semelhantes para eu ter noção de como resolver, e por isso peço a ajuda de vocês!

A questão é a seguinte:
"Ache a área da região limitada pela reta
e pela curva
."O livro apresenta uma sugestão para resolver tal problema, que seria o seguinte: "resolva a equação cúbica em y em termos de x e expresse y como duas funções de x.".
Bom, não consigo isolar X e Y dessa "função". Então não me ajudou muito tal sugestão.
O que eu (acho que)entendi é que para resolver esse problema, terei de achar os pontos onde essa curva intercepta a reta x = 4 e integrar essa curva sendo os limites de integração 0 e 4, visto que se x=0, y=0.
Alguém pode ajudar ? Obrigado desde já!

. Portanto, você deve tentar colocá-la assim. Para isto, visto que a forma implícita é uma forma cúbica em
você deve tentar resolvê-la para
percebendo que ela é uma forma quadática para
e na segunda
.

até
a curva de baixo tem área positiva e em diante tem area negativa via integral. Daí, como no primeiro intervalo voce deve subtrair da área total e no segundo somar, os sinais se equilibram e voce tem o resultado de imediato.
- integral da função de baixo
.
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio. ![{0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20} {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}](/latexrender/pictures/c0100c6f4d8bdbb7d54165e6be7aff04.png)
da seguinte forma:
.
da seguinte forma:
.