• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Radiciacão

Radiciacão

Mensagempor anneliesero » Seg Jul 22, 2013 12:09

Olá, pessoal :)

nesses exercícios aqui não estão conferindo com o gabarito. Alguém poderia por favor identificar onde está o erro? Não consegui terminar sendo que não exite raiz cúbica exata desses números...

Simplifique as raízes cúbicas:

\sqrt[3]{500}=\sqrt[3]{5.100}=\sqrt[3]{5}.\sqrt[3]{100}


\sqrt[3]{320}=\sqrt[3]{4.80}=\sqrt[3]{4}.\sqrt[3]{80}


\sqrt[3]{-81}=\sqrt[3]{9.-9}=\sqrt[3]{3.-3}.\sqrt[3]{3.3}=-3\sqrt[3]{3}

Os resultados são respectivamente: 5\sqrt[3]{3}, 4\sqrt[3]{5}, -3\sqrt[3]{3}.
''Não confunda jamais conhecimento com sabedoria. Um o ajuda a ganhar a vida; o outro a construir uma vida.'' - Sandra Carey
anneliesero
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 86
Registrado em: Qui Set 13, 2012 17:58
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Radiciacão

Mensagempor temujin » Seg Jul 22, 2013 15:01

Olá.

Perceba o seguinte: Uma raiz enésima qualquer pode sempre ser escrita como \sqrt[n]a = a^{1/n}. Portanto, se vc elevar este número a n, vc terá (a^{1/n})^n = a

No seu caso vc tem uma raiz cúbica. Então, como vc pode "tirar" um número de dentro desta raiz? Expressando ele como alguma potência de 3. Vamos pegar suas questões:

\sqrt[3]{500} =\sqrt[3]{5^3.4} = 5\sqrt[3]{4} (confira o gabarito pra ver se é raiz de 3 ou 4)

\sqrt[3]{420} =\sqrt[3]{4^3.5} = 4\sqrt[3]{5}

Tente concluir o terceiro.
temujin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Qui Mar 14, 2013 15:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59